Suppr超能文献

运动模块性对上肢运动表现、学习和泛化的影响:计算分析。

The effects of motor modularity on performance, learning and generalizability in upper-extremity reaching: a computational analysis.

机构信息

Department of Bioengineering and Mechanical Engineering, Stanford University, Stanford, CA, USA.

出版信息

J R Soc Interface. 2020 Jun;17(167):20200011. doi: 10.1098/rsif.2020.0011. Epub 2020 Jun 3.

Abstract

It has been hypothesized that the central nervous system simplifies the production of movement by limiting motor commands to a small set of modules known as muscle synergies. Recently, investigators have questioned whether a low-dimensional controller can produce the rich and flexible behaviours seen in everyday movements. To study this issue, we implemented muscle synergies in a biomechanically realistic model of the human upper extremity and performed computational experiments to determine whether synergies introduced task performance deficits, facilitated the learning of movements, and generalized to different movements. We derived sets of synergies from the muscle excitations our dynamic optimizations computed for a nominal task (reaching in a plane). Then we compared the performance and learning rates of a controller that activated all muscles independently to controllers that activated the synergies derived from the nominal reaching task. We found that a controller based on synergies had errors within 1 cm of a full-dimensional controller and achieved faster learning rates (as estimated from computational time to converge). The synergy-based controllers could also accomplish new tasks-such as reaching to targets on a higher or lower plane, and starting from alternative initial poses-with average errors similar to a full-dimensional controller.

摘要

人们假设,中枢神经系统通过将运动指令限制在一小部分称为肌肉协同的模块中,从而简化了运动的产生。最近,研究人员质疑低维控制器是否可以产生日常运动中所见的丰富而灵活的行为。为了研究这个问题,我们在人体上肢的生物力学逼真模型中实现了肌肉协同,并进行了计算实验,以确定协同作用是否会导致任务表现出现缺陷,是否有助于运动的学习,以及是否可以推广到不同的运动。我们从动力学优化计算的名义任务(在一个平面上进行伸展)的肌肉激发中推导出了一组协同作用。然后,我们将独立激活所有肌肉的控制器与从名义伸展任务中推导出来的协同作用激活的控制器的性能和学习率进行了比较。我们发现,基于协同作用的控制器的误差与全维控制器的误差相差不到 1 厘米,并且能够更快地学习(根据收敛的计算时间来估计)。基于协同作用的控制器还可以完成新的任务,例如到达更高或更低平面的目标,以及从替代的初始姿势开始,其平均误差与全维控制器相似。

相似文献

5
A computational analysis of motor synergies by dynamic response decomposition.基于动态响应分解的运动协同的计算分析。
Front Comput Neurosci. 2014 Jan 16;7:191. doi: 10.3389/fncom.2013.00191. eCollection 2013.
10
Effective force control by muscle synergies.通过肌肉协同作用实现有效力控制。
Front Comput Neurosci. 2014 Apr 17;8:46. doi: 10.3389/fncom.2014.00046. eCollection 2014.

本文引用的文献

6
Distinct neural circuits for control of movement vs. holding still.用于控制运动与保持静止的不同神经回路。
J Neurophysiol. 2017 Apr 1;117(4):1431-1460. doi: 10.1152/jn.00840.2016. Epub 2017 Jan 4.
7
A spiking neural model of adaptive arm control.一种自适应手臂控制的脉冲神经模型。
Proc Biol Sci. 2016 Nov 30;283(1843). doi: 10.1098/rspb.2016.2134.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验