From the Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India,
F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, and.
J Biol Chem. 2018 Dec 7;293(49):19148-19156. doi: 10.1074/jbc.RA118.004276. Epub 2018 Oct 11.
About 1 billion years ago, in a single-celled holozoan ancestor of all animals, a gene fusion of two tRNA synthetases formed the bifunctional enzyme, glutamyl-prolyl-tRNA synthetase (EPRS). We propose here that a confluence of metabolic, biochemical, and environmental factors contributed to the specific fusion of glutamyl- (ERS) and prolyl- (PRS) tRNA synthetases. To test this idea, we developed a mathematical model that centers on the precursor-product relationship of glutamic acid and proline, as well as metabolic constraints on free glutamic acid availability near the time of the fusion event. Our findings indicate that proline content increased in the proteome during the emergence of animals, thereby increasing demand for free proline. Together, these constraints contributed to a marked cellular depletion of glutamic acid and its products, with potentially catastrophic consequences. In response, an ancient organism invented an elegant solution in which genes encoding ERS and PRS fused to form , forcing coexpression of the two enzymes and preventing lethal dysregulation. The substantial evolutionary advantage of this coregulatory mechanism is evidenced by the persistence of EPRS in nearly all extant animals.
大约 10 亿年前,在所有动物的单细胞真后生动物祖先中,两种 tRNA 合成酶的基因融合形成了双功能酶,即谷氨酰-脯氨酰-tRNA 合成酶(EPRS)。我们在这里提出,代谢、生化和环境因素的融合促成了谷氨酰基(ERS)和脯氨酰基(PRS)tRNA 合成酶的特异性融合。为了验证这一想法,我们开发了一个数学模型,该模型以谷氨酸和脯氨酸的前体-产物关系以及融合事件发生时游离谷氨酸可用性的代谢限制为中心。我们的研究结果表明,在动物出现期间,蛋白质组中的脯氨酸含量增加,从而增加了对游离脯氨酸的需求。这些限制共同导致了细胞内谷氨酸及其产物的明显耗竭,可能产生灾难性的后果。作为回应,一种古老的生物体发明了一种巧妙的解决方案,其中编码 ERS 和 PRS 的基因融合形成 ,迫使两种酶的共表达,并防止致命的失调。这种核心调控机制的巨大进化优势体现在 EPRS 在几乎所有现存动物中的持续存在上。