Suppr超能文献

融合氨酰-tRNA 合成酶,谷氨酰-脯氨酰-tRNA 合成酶的代谢起源。

Metabolic origin of the fused aminoacyl-tRNA synthetase, glutamyl-prolyl-tRNA synthetase.

机构信息

From the Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India,

F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, and.

出版信息

J Biol Chem. 2018 Dec 7;293(49):19148-19156. doi: 10.1074/jbc.RA118.004276. Epub 2018 Oct 11.

Abstract

About 1 billion years ago, in a single-celled holozoan ancestor of all animals, a gene fusion of two tRNA synthetases formed the bifunctional enzyme, glutamyl-prolyl-tRNA synthetase (EPRS). We propose here that a confluence of metabolic, biochemical, and environmental factors contributed to the specific fusion of glutamyl- (ERS) and prolyl- (PRS) tRNA synthetases. To test this idea, we developed a mathematical model that centers on the precursor-product relationship of glutamic acid and proline, as well as metabolic constraints on free glutamic acid availability near the time of the fusion event. Our findings indicate that proline content increased in the proteome during the emergence of animals, thereby increasing demand for free proline. Together, these constraints contributed to a marked cellular depletion of glutamic acid and its products, with potentially catastrophic consequences. In response, an ancient organism invented an elegant solution in which genes encoding ERS and PRS fused to form , forcing coexpression of the two enzymes and preventing lethal dysregulation. The substantial evolutionary advantage of this coregulatory mechanism is evidenced by the persistence of EPRS in nearly all extant animals.

摘要

大约 10 亿年前,在所有动物的单细胞真后生动物祖先中,两种 tRNA 合成酶的基因融合形成了双功能酶,即谷氨酰-脯氨酰-tRNA 合成酶(EPRS)。我们在这里提出,代谢、生化和环境因素的融合促成了谷氨酰基(ERS)和脯氨酰基(PRS)tRNA 合成酶的特异性融合。为了验证这一想法,我们开发了一个数学模型,该模型以谷氨酸和脯氨酸的前体-产物关系以及融合事件发生时游离谷氨酸可用性的代谢限制为中心。我们的研究结果表明,在动物出现期间,蛋白质组中的脯氨酸含量增加,从而增加了对游离脯氨酸的需求。这些限制共同导致了细胞内谷氨酸及其产物的明显耗竭,可能产生灾难性的后果。作为回应,一种古老的生物体发明了一种巧妙的解决方案,其中编码 ERS 和 PRS 的基因融合形成 ,迫使两种酶的共表达,并防止致命的失调。这种核心调控机制的巨大进化优势体现在 EPRS 在几乎所有现存动物中的持续存在上。

相似文献

4
Evolution of function of a fused metazoan tRNA synthetase.融合后生动物 tRNA 合成酶功能的进化。
Mol Biol Evol. 2011 Jan;28(1):437-47. doi: 10.1093/molbev/msq246. Epub 2010 Sep 9.

引用本文的文献

3
AKT-dependent nuclear localization of EPRS1 activates PARP1 in breast cancer cells.EPRS1 的 AKT 依赖性核定位激活乳腺癌细胞中的 PARP1。
Proc Natl Acad Sci U S A. 2024 Jul 23;121(30):e2303642121. doi: 10.1073/pnas.2303642121. Epub 2024 Jul 16.
9
Celebrating science's next generation.庆祝科学界的新一代。
J Biol Chem. 2019 Mar 1;294(9):3323-3324. doi: 10.1074/jbc.E119.008002.
10
Evolution of the multi-tRNA synthetase complex and its role in cancer.多 tRNA 合成酶复合物的进化及其在癌症中的作用。
J Biol Chem. 2019 Apr 5;294(14):5340-5351. doi: 10.1074/jbc.REV118.002958. Epub 2019 Feb 19.

本文引用的文献

3
Aminoacyl-tRNA synthetase complexes in evolution.进化中的氨酰-tRNA合成酶复合物
Int J Mol Sci. 2015 Mar 23;16(3):6571-94. doi: 10.3390/ijms16036571.
8
Citric acid cycle and the origin of MARS.柠檬酸循环与 MARS 的起源。
Trends Biochem Sci. 2013 May;38(5):222-8. doi: 10.1016/j.tibs.2013.01.005. Epub 2013 Feb 14.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验