Suppr超能文献

疾病相关突变在双功能氨酰-tRNA 合成酶基因中引发综合应激反应。

Disease-associated mutations in a bifunctional aminoacyl-tRNA synthetase gene elicit the integrated stress response.

机构信息

Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus Ohio, USA.

Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis Indiana, USA.

出版信息

J Biol Chem. 2021 Oct;297(4):101203. doi: 10.1016/j.jbc.2021.101203. Epub 2021 Sep 17.

Abstract

Aminoacyl-tRNA synthetases (ARSs) catalyze the charging of specific amino acids onto cognate tRNAs, an essential process for protein synthesis. Mutations in ARSs are frequently associated with a variety of human diseases. The human EPRS1 gene encodes a bifunctional glutamyl-prolyl-tRNA synthetase (EPRS) with two catalytic cores and appended domains that contribute to nontranslational functions. In this study, we report compound heterozygous mutations in EPRS1, which lead to amino acid substitutions P14R and E205G in two patients with diabetes and bone diseases. While neither mutation affects tRNA binding or association of EPRS with the multisynthetase complex, E205G in the glutamyl-tRNA synthetase (ERS) region of EPRS is defective in amino acid activation and tRNA charging. The P14R mutation induces a conformational change and altered tRNA charging kinetics in vitro. We propose that the altered catalytic activity and conformational changes in the EPRS variants sensitize patient cells to stress, triggering an increased integrated stress response (ISR) that diminishes cell viability. Indeed, patient-derived cells expressing the compound heterozygous EPRS show heightened induction of the ISR, suggestive of disruptions in protein homeostasis. These results have important implications for understanding ARS-associated human disease mechanisms and development of new therapeutics.

摘要

氨酰-tRNA 合成酶(ARSs)催化特定氨基酸与相应 tRNA 的负载,这是蛋白质合成的一个基本过程。ARSs 的突变与多种人类疾病密切相关。人类 EPRS1 基因编码一种具有两个催化核心和附加结构域的双功能谷氨酸-脯氨酸-tRNA 合成酶(EPRS),这些结构域有助于非翻译功能。在本研究中,我们报告了 EPRS1 中的复合杂合突变,导致两名糖尿病和骨骼疾病患者的氨基酸替换 P14R 和 E205G。虽然这两种突变都不影响 tRNA 结合或 EPRS 与多合成酶复合物的结合,但 EPRS 中谷氨酸-tRNA 合成酶(ERS)区域的 E205G 在氨基酸激活和 tRNA 负载方面存在缺陷。P14R 突变诱导构象变化,并改变体外 tRNA 负载动力学。我们提出,EPRS 变异体的催化活性改变和构象变化使患者细胞对应激敏感,触发增强的整体应激反应(ISR),从而降低细胞活力。事实上,表达复合杂合 EPRS 的患者衍生细胞表现出增强的 ISR 诱导,提示蛋白质稳态受到破坏。这些结果对于理解 ARS 相关人类疾病机制和开发新的治疗方法具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3f5/8511952/7fb8d7d7312a/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验