Barr Ian G, Donis Ruben O, Katz Jacqueline M, McCauley John W, Odagiri Takato, Trusheim Heidi, Tsai Theodore F, Wentworth David E
1WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute For Infection And Immunity, 792 Elizabeth Street, Melbourne, 3000 Australia.
Biomedical Advanced Research and Development Authority, Influenza and Emerging Infectious Diseases Division, 300 Independence Avenue, SW, Washington, DC 20201 USA.
NPJ Vaccines. 2018 Oct 9;3:44. doi: 10.1038/s41541-018-0079-z. eCollection 2018.
The 2017-2018 seasonal influenza epidemics were severe in the US and Australia where the A(H3N2) subtype viruses predominated. Although circulating A(H3N2) viruses did not differ antigenically from that recommended by the WHO for vaccine production, overall interim vaccine effectiveness estimates were below historic averages (33%) for A(H3N2) viruses. The majority (US) or all (Australian) vaccine doses contained multiple amino-acid changes in the hemagglutinin protein, resulting from the necessary adaptation of the virus to embryonated hen's eggs used for most vaccine manufacturing. Previous reports have suggested a potential negative impact of egg-driven substitutions on vaccine performance. With BARDA support, two vaccines licensed in the US are produced in cell culture: recombinant influenza vaccine (RIV, Flublok™) manufactured in insect cells and inactivated mammalian cell-grown vaccine (ccIIV, Flucelvax™). Quadrivalent ccIIV (ccIIV4) vaccine for the 2017-2018 influenza season was produced using an A(H3N2) seed virus propagated exclusively in cell culture and therefore lacking egg adaptative changes. Sufficient ccIIV doses were distributed (but not RIV doses) to enable preliminary estimates of its higher effectiveness relative to the traditional egg-based vaccines, with study details pending. The increased availability of comparative product-specific vaccine effectiveness estimates for cell-based and egg-based vaccines may provide critical clues to inform vaccine product improvements moving forward.
2017 - 2018年季节性流感疫情在美国和澳大利亚较为严重,其中A(H3N2)亚型病毒占主导。尽管流行的A(H3N2)病毒在抗原性上与世界卫生组织推荐用于疫苗生产的病毒没有差异,但A(H3N2)病毒的总体中期疫苗有效性估计低于历史平均水平(33%)。大多数(美国)或所有(澳大利亚)疫苗剂量的血凝素蛋白含有多个氨基酸变化,这是由于病毒需要适应用于大多数疫苗生产的鸡胚蛋。先前的报告表明,鸡蛋驱动的替换可能对疫苗性能产生负面影响。在美国生物医学高级研究与发展管理局(BARDA)的支持下,美国许可的两种疫苗采用细胞培养生产:在昆虫细胞中生产的重组流感疫苗(RIV,Flublok™)和在哺乳动物细胞中生长的灭活疫苗(ccIIV,Flucelvax™)。2017 - 2018年流感季节的四价ccIIV(ccIIV4)疫苗使用仅在细胞培养中繁殖的A(H3N2)种子病毒生产,因此没有鸡蛋适应性变化。已分发了足够剂量的ccIIV(但没有RIV剂量),以便初步估计其相对于传统鸡蛋疫苗的更高有效性,研究细节待定。基于细胞和基于鸡蛋的疫苗的比较产品特异性疫苗有效性估计的可用性增加,可能为未来疫苗产品改进提供关键线索。