Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK.
Diabetes and Obesity Research Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.
Diabetologia. 2019 Jan;62(1):99-111. doi: 10.1007/s00125-018-4743-7. Epub 2018 Oct 17.
AIMS/HYPOTHESIS: Pancreatic beta cells secrete insulin to maintain glucose homeostasis, and beta cell failure is a hallmark of type 2 diabetes. Glucose triggers insulin secretion in beta cells via oxidative mitochondrial pathways. However, it also feeds mitochondrial anaplerotic pathways, driving citrate export and cytosolic malonyl-CoA production by the acetyl-CoA carboxylase 1 (ACC1) enzyme. This pathway has been proposed as an alternative glucose-sensing mechanism, supported mainly by in vitro data. Here, we sought to address the role of the beta cell ACC1-coupled pathway in insulin secretion and glucose homeostasis in vivo.
Acaca, encoding ACC1 (the principal ACC isoform in islets), was deleted in beta cells of mice using the Cre/loxP system. Acaca floxed mice were crossed with Ins2cre mice (βACC1KO; life-long beta cell gene deletion) or Pdx1creER mice (tmx-βACC1KO; inducible gene deletion in adult beta cells). Beta cell function was assessed using in vivo metabolic physiology and ex vivo islet experiments. Beta cell mass was analysed using histological techniques.
βACC1KO and tmx-βACC1KO mice were glucose intolerant and had defective insulin secretion in vivo. Isolated islet studies identified impaired insulin secretion from beta cells, independent of changes in the abundance of neutral lipids previously implicated as amplification signals. Pancreatic morphometry unexpectedly revealed reduced beta cell size in βACC1KO mice but not in tmx-βACC1KO mice, with decreased levels of proteins involved in the mechanistic target of rapamycin kinase (mTOR)-dependent protein translation pathway underpinning this effect.
CONCLUSIONS/INTERPRETATION: Our study demonstrates that the beta cell ACC1-coupled pathway is critical for insulin secretion in vivo and ex vivo and that it is indispensable for glucose homeostasis. We further reveal a role for ACC1 in controlling beta cell growth prior to adulthood.
目的/假设:胰腺β细胞分泌胰岛素以维持葡萄糖稳态,而β细胞衰竭是 2 型糖尿病的标志。葡萄糖通过氧化线粒体途径触发β细胞胰岛素分泌。然而,它也为线粒体补充途径提供燃料,通过乙酰辅酶 A 羧化酶 1(ACC1)酶驱动柠檬酸的输出和细胞质丙二酰辅酶 A 的产生。该途径已被提议作为替代葡萄糖感应机制,主要得到体外数据的支持。在这里,我们试图解决β细胞 ACC1 偶联途径在体内胰岛素分泌和葡萄糖稳态中的作用。
使用 Cre/loxP 系统在小鼠的β细胞中删除编码 ACC1(胰岛中主要的 ACC 同工酶)的 Acaca 基因。将 Acaca floxed 小鼠与 Ins2cre 小鼠(βACC1KO;终生β细胞基因缺失)或 Pdx1creER 小鼠(tmx-βACC1KO;成年β细胞中诱导性基因缺失)杂交。使用体内代谢生理学和离体胰岛实验评估β细胞功能。使用组织学技术分析β细胞质量。
βACC1KO 和 tmx-βACC1KO 小鼠表现出葡萄糖不耐受和胰岛素分泌缺陷。离体胰岛研究表明,β细胞胰岛素分泌受损,而与先前被认为是放大信号的中性脂质丰度的变化无关。胰腺形态计量学出乎意料地显示,βACC1KO 小鼠的β细胞体积减小,但 tmx-βACC1KO 小鼠的β细胞体积没有减小,这一效应的基础是参与机械靶标雷帕霉素激酶(mTOR)依赖性蛋白翻译途径的蛋白水平降低。
结论/解释:我们的研究表明,β细胞 ACC1 偶联途径对于体内和离体胰岛素分泌至关重要,对于葡萄糖稳态也是必不可少的。我们进一步揭示了 ACC1 在成年前控制β细胞生长的作用。