Suppr超能文献

基于视频的活动分类的帕金森病患者自动定时站起和行走子任务分割。

Automatic Timed Up-and-Go Sub-Task Segmentation for Parkinson's Disease Patients Using Video-Based Activity Classification.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2018 Nov;26(11):2189-2199. doi: 10.1109/TNSRE.2018.2875738. Epub 2018 Oct 12.

Abstract

The timed up-and-go (TUG) test has been widely accepted as a standard assessment for measuring the basic functional mobility of patients with Parkinson's disease. Several basic mobility sub-tasks "Sit," "Sit-to-Stand," "Walk," "Turn," "Walk-Back," and "Sit-Back" are included in a TUG test. It has been shown that the time costs of these sub-tasks are useful clinical parameters for the assessment of Parkinson's disease. Several automatic methods have been proposed to segment and time these sub-tasks in a TUG test. However, these methods usually require either well-controlled environments for the TUG video recording or information from special devices, such as wearable inertial sensors, ambient sensors, or depth cameras. In this paper, an automatic TUG sub-task segmentation method using video-based activity classification is proposed and validated in a study with 24 Parkinson's disease patients. Videos used in this paper are recorded in semi-controlled environments with various backgrounds. The state-of-the-art deep learning-base 2-D human pose estimation technologies are used for feature extraction. A support vector machine and a long short-term memory network are then used for the activity classification and the subtask segmentation. Our method can be used to automatically acquire clinical parameters for the assessment of Parkinson's disease using TUG videos-only, leading to the possibility of remote monitoring of the patients' condition.

摘要

计时起立行走(TUG)测试已被广泛接受,作为评估帕金森病患者基本功能性移动能力的标准方法。TUG 测试包含了几个基本移动子任务,如“坐”、“从坐到站”、“走”、“转”、“走回”和“坐回”。已有研究表明,这些子任务的时间成本是评估帕金森病的有用临床参数。已经提出了几种自动方法来分割和计时 TUG 测试中的这些子任务。然而,这些方法通常需要 TUG 视频记录的环境得到很好的控制,或者需要来自特殊设备的信息,如可穿戴惯性传感器、环境传感器或深度摄像机。在本文中,提出了一种基于视频的活动分类的自动 TUG 子任务分割方法,并在一项包含 24 名帕金森病患者的研究中进行了验证。本文使用的视频是在具有各种背景的半受控环境中记录的。使用最先进的基于深度学习的 2-D 人体姿势估计技术进行特征提取。然后,使用支持向量机和长短期记忆网络进行活动分类和子任务分割。我们的方法可以仅使用 TUG 视频自动获取用于评估帕金森病的临床参数,从而有可能远程监测患者的病情。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验