Suppr超能文献

BE-DTI': 基于降维和主动学习的药物靶点相互作用预测集成框架。

BE-DTI': Ensemble framework for drug target interaction prediction using dimensionality reduction and active learning.

机构信息

Computer Science and Engineering Department, Thapar Institute of Engineering & Technology, Punjab, Patiala, India.

出版信息

Comput Methods Programs Biomed. 2018 Oct;165:151-162. doi: 10.1016/j.cmpb.2018.08.011. Epub 2018 Aug 22.

Abstract

BACKGROUND AND OBJECTIVE

Drug-target interaction prediction plays an intrinsic role in the drug discovery process. Prediction of novel drugs and targets helps in identifying optimal drug therapies for various stringent diseases. Computational prediction of drug-target interactions can help to identify potential drug-target pairs and speed-up the process of drug repositioning. In our present, work we have focused on machine learning algorithms for predicting drug-target interactions from the pool of existing drug-target data. The key idea is to train the classifier using existing DTI so as to predict new or unknown DTI. However, there are various challenges such as class imbalance and high dimensional nature of data that need to be addressed before developing optimal drug-target interaction model.

METHODS

In this paper, we propose a bagging based ensemble framework named BE-DTI' for drug-target interaction prediction using dimensionality reduction and active learning to deal with class-imbalanced data. Active learning helps to improve under-sampling bagging based ensembles. Dimensionality reduction is used to deal with high dimensional data.

RESULTS

Results show that the proposed technique outperforms the other five competing methods in 10-fold cross-validation experiments in terms of AUC=0.927, Sensitivity=0.886, Specificity=0.864, and G-mean=0.874.

CONCLUSION

Missing interactions and new interactions are predicted using the proposed framework. Some of the known interactions are removed from the original dataset and their interactions are recalculated to check the accuracy of the proposed framework. Moreover, validation of the proposed approach is performed using the external dataset. All these results show that structurally similar drugs tend to interact with similar targets.

摘要

背景与目的

药物-靶点相互作用预测在药物发现过程中起着重要作用。预测新的药物和靶点有助于为各种严重疾病确定最佳的药物治疗方法。计算药物-靶点相互作用的预测可以帮助识别潜在的药物-靶点对,并加速药物重定位的过程。在我们目前的工作中,我们专注于从现有的药物-靶点数据池中预测药物-靶点相互作用的机器学习算法。关键思想是使用现有的 DTI 来训练分类器,以便预测新的或未知的 DTI。然而,在开发最佳的药物-靶点相互作用模型之前,需要解决各种挑战,如类不平衡和数据的高维性质。

方法

在本文中,我们提出了一种基于 bagging 的集成框架,称为 BE-DTI',用于使用降维和主动学习来处理类不平衡数据的药物-靶点相互作用预测。主动学习有助于改进基于欠采样的 bagging 集成。降维用于处理高维数据。

结果

结果表明,在 10 倍交叉验证实验中,与其他五种竞争方法相比,该方法在 AUC=0.927、敏感性=0.886、特异性=0.864 和 G-mean=0.874 方面表现更好。

结论

使用提出的框架预测缺失的相互作用和新的相互作用。从原始数据集中删除一些已知的相互作用,并重新计算它们的相互作用,以检查提出的框架的准确性。此外,还使用外部数据集对所提出的方法进行验证。所有这些结果表明,结构相似的药物往往与相似的靶点相互作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验