Suppr超能文献

通过深度目标检测网络从视网膜眼底图像中进行视盘分割。

Optic Disc Segmentation from Retinal Fundus Images via Deep Object Detection Networks.

作者信息

Sun Xu, Xu Yanwu, Zhao Wei, You Tianyuan, Liu Jiang

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:5954-5957. doi: 10.1109/EMBC.2018.8513592.

Abstract

Accurate optic disc (OD) segmentation is a fundamental step in computer-aided ocular disease diagnosis. In this paper, we propose a new pipeline to segment OD from retinal fundus images based on deep object detection networks. The fundus image segmentation problem is redefined as a relatively more straightforward object detection task. This then allows us to determine the OD boundary simply by transforming the predicted bounding box into a vertical and non-rotated ellipse. Using Faster R-CNN as the object detector, our method achieves state-of-the-art OD segmentation results on ORIGA dataset, outperforming existing methods in this field.

摘要

准确的视盘(OD)分割是计算机辅助眼病诊断的基本步骤。在本文中,我们提出了一种基于深度目标检测网络从眼底图像中分割视盘的新流程。将眼底图像分割问题重新定义为一个相对更直接的目标检测任务。这使我们能够通过将预测的边界框转换为垂直且非旋转的椭圆来简单地确定视盘边界。使用更快的区域卷积神经网络(Faster R-CNN)作为目标检测器,我们的方法在ORIGA数据集上取得了领先的视盘分割结果,优于该领域现有的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验