Sun Xu, Xu Yanwu, Zhao Wei, You Tianyuan, Liu Jiang
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:5954-5957. doi: 10.1109/EMBC.2018.8513592.
Accurate optic disc (OD) segmentation is a fundamental step in computer-aided ocular disease diagnosis. In this paper, we propose a new pipeline to segment OD from retinal fundus images based on deep object detection networks. The fundus image segmentation problem is redefined as a relatively more straightforward object detection task. This then allows us to determine the OD boundary simply by transforming the predicted bounding box into a vertical and non-rotated ellipse. Using Faster R-CNN as the object detector, our method achieves state-of-the-art OD segmentation results on ORIGA dataset, outperforming existing methods in this field.
准确的视盘(OD)分割是计算机辅助眼病诊断的基本步骤。在本文中,我们提出了一种基于深度目标检测网络从眼底图像中分割视盘的新流程。将眼底图像分割问题重新定义为一个相对更直接的目标检测任务。这使我们能够通过将预测的边界框转换为垂直且非旋转的椭圆来简单地确定视盘边界。使用更快的区域卷积神经网络(Faster R-CNN)作为目标检测器,我们的方法在ORIGA数据集上取得了领先的视盘分割结果,优于该领域现有的方法。