Suppr超能文献

通过微型 CRISPR-Cas14 酶实现程序化 DNA 破坏。

Programmed DNA destruction by miniature CRISPR-Cas14 enzymes.

机构信息

Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.

Department of Earth and Planetary Sciences, University of California, Berkeley, CA 94720, USA.

出版信息

Science. 2018 Nov 16;362(6416):839-842. doi: 10.1126/science.aav4294. Epub 2018 Oct 18.

Abstract

CRISPR-Cas systems provide microbes with adaptive immunity to infectious nucleic acids and are widely employed as genome editing tools. These tools use RNA-guided Cas proteins whose large size (950 to 1400 amino acids) has been considered essential to their specific DNA- or RNA-targeting activities. Here we present a set of CRISPR-Cas systems from uncultivated archaea that contain Cas14, a family of exceptionally compact RNA-guided nucleases (400 to 700 amino acids). Despite their small size, Cas14 proteins are capable of targeted single-stranded DNA (ssDNA) cleavage without restrictive sequence requirements. Moreover, target recognition by Cas14 triggers nonspecific cutting of ssDNA molecules, an activity that enables high-fidelity single-nucleotide polymorphism genotyping (Cas14-DETECTR). Metagenomic data show that multiple CRISPR-Cas14 systems evolved independently and suggest a potential evolutionary origin of single-effector CRISPR-based adaptive immunity.

摘要

CRISPR-Cas 系统为微生物提供了对传染性核酸的适应性免疫,被广泛用作基因组编辑工具。这些工具使用 RNA 指导的 Cas 蛋白,其较大的尺寸(950 到 1400 个氨基酸)被认为对其特定的 DNA 或 RNA 靶向活性至关重要。在这里,我们展示了一组来自未培养古菌的 CRISPR-Cas 系统,其中包含 Cas14,这是一组异常紧凑的 RNA 指导的核酸酶(400 到 700 个氨基酸)。尽管它们的体积很小,但 Cas14 蛋白能够在没有限制性序列要求的情况下靶向单链 DNA(ssDNA)切割。此外,Cas14 对靶标的识别触发了 ssDNA 分子的非特异性切割,这种活性使高保真单核苷酸多态性基因分型(Cas14-DETECTR)成为可能。宏基因组数据表明,多个 CRISPR-Cas14 系统独立进化,并暗示了基于单效应物的 CRISPR 适应性免疫的潜在进化起源。

相似文献

1
Programmed DNA destruction by miniature CRISPR-Cas14 enzymes.通过微型 CRISPR-Cas14 酶实现程序化 DNA 破坏。
Science. 2018 Nov 16;362(6416):839-842. doi: 10.1126/science.aav4294. Epub 2018 Oct 18.
9
Structure of the miniature type V-F CRISPR-Cas effector enzyme.微型 V-F CRISPR-Cas 效应酶的结构。
Mol Cell. 2021 Feb 4;81(3):558-570.e3. doi: 10.1016/j.molcel.2020.11.035. Epub 2020 Dec 16.
10
Structural basis for the activity of the type VII CRISPR-Cas system.VII 型 CRISPR-Cas 系统活性的结构基础。
Nature. 2024 Sep;633(8029):465-472. doi: 10.1038/s41586-024-07815-0. Epub 2024 Aug 14.

引用本文的文献

4
Unveiling the invisible genomic dynamics.揭示无形的基因组动态。
Exp Mol Med. 2025 Jul;57(7):1400-1408. doi: 10.1038/s12276-025-01434-z. Epub 2025 Jul 31.
7
ENHANCED CLEAVAGE OF GENOMIC USING CASX2.使用CasX2增强基因组切割
bioRxiv. 2025 Jul 11:2025.07.08.663680. doi: 10.1101/2025.07.08.663680.

本文引用的文献

5
6
A Broad-Spectrum Inhibitor of CRISPR-Cas9.一种CRISPR-Cas9的广谱抑制剂。
Cell. 2017 Sep 7;170(6):1224-1233.e15. doi: 10.1016/j.cell.2017.07.037. Epub 2017 Aug 24.
7
The Molecular Architecture for RNA-Guided RNA Cleavage by Cas13a.Cas13a 介导的 RNA 引导的 RNA 切割的分子结构
Cell. 2017 Aug 10;170(4):714-726.e10. doi: 10.1016/j.cell.2017.06.050. Epub 2017 Jul 27.
8
Diversity, classification and evolution of CRISPR-Cas systems.CRISPR-Cas 系统的多样性、分类和进化。
Curr Opin Microbiol. 2017 Jun;37:67-78. doi: 10.1016/j.mib.2017.05.008. Epub 2017 Jun 9.
9
CRISPR-Cas: Adapting to change.CRISPR-Cas:适应变化。
Science. 2017 Apr 7;356(6333). doi: 10.1126/science.aal5056. Epub 2017 Apr 6.
10
Diversity and evolution of class 2 CRISPR-Cas systems.2类CRISPR-Cas系统的多样性与进化
Nat Rev Microbiol. 2017 Mar;15(3):169-182. doi: 10.1038/nrmicro.2016.184. Epub 2017 Jan 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验