Karlsruhe Institute of Technology (KIT) Institute of Functional Interfaces (IFG), Hermann-von-Helmholtz Platz-1, Eggenstein-Leopoldshafen, 76344, Germany.
Karlsruhe Institute of Technology (KIT) Institute of Microstructure Technology (IMT), Hermann-von-Helmholtz Platz-1, Eggenstein-Leopoldshafen, 76344, Germany.
Nat Commun. 2018 Oct 18;9(1):4332. doi: 10.1038/s41467-018-06829-3.
An ideal material for photon harvesting must allow control of the exciton diffusion length and directionality. This is necessary in order to guide excitons to a reaction center, where their energy can drive a desired process. To reach this goal both of the following are required; short- and long-range structural order in the material and a detailed understanding of the excitonic transport. Here we present a strategy to realize crystalline chromophore assemblies with bespoke architecture. We demonstrate this approach by assembling anthracene dibenzoic acid chromophore into a highly anisotropic, crystalline structure using a layer-by-layer process. We observe two different types of photoexcited states; one monomer-related, the other excimer-related. By incorporating energy-accepting chromophores in this crystalline assembly at different positions, we demonstrate the highly anisotropic motion of the excimer-related state along the [010] direction of the chromophore assembly. In contrast, this anisotropic effect is inefficient for the monomer-related excited state.
用于光子收集的理想材料必须能够控制激子的扩散长度和方向性。这是必要的,以便将激子引导到反应中心,在那里它们的能量可以驱动所需的过程。为了实现这一目标,需要材料具有短程和长程结构有序性,以及对激子输运的详细了解。在这里,我们提出了一种实现具有定制结构的晶体发色团组装体的策略。我们通过使用层层工艺将蒽二苯甲酸发色团组装成具有各向异性的晶体结构来证明这种方法。我们观察到两种不同类型的光激发态:一种与单体有关,另一种与激子有关。通过在这个晶体组装体中不同位置掺入能量接受发色团,我们证明了激子相关态沿发色团组装体的[010]方向的高度各向异性运动。相比之下,这种各向异性效应对于单体相关的激发态效率不高。