Suppr超能文献

用于表征微血管血流和阻力的可穿戴散斑容积描记法(SPG)。

Wearable speckle plethysmography (SPG) for characterizing microvascular flow and resistance.

作者信息

Ghijsen Michael, Rice Tyler B, Yang Bruce, White Sean M, Tromberg Bruce J

机构信息

Laser Microbeam and Medical Program, Beckman Laser Institute, 1002 Health Sciences Road, Irvine, CA 92612, USA.

Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA.

出版信息

Biomed Opt Express. 2018 Jul 30;9(8):3937-3952. doi: 10.1364/BOE.9.003937. eCollection 2018 Aug 1.

Abstract

In this work we introduce a modified form of laser speckle imaging (LSI) referred to as affixed transmission speckle analysis (ATSA) that uses a single coherent light source to probe two physiological signals: one related to pulsatile vascular expansion (classically known as the photoplethysmographic (PPG) waveform) and one related to pulsatile vascular blood flow (named here the speckle plethysmographic (SPG) waveform). The PPG signal is determined by recording intensity fluctuations, and the SPG signal is determined via the LSI dynamic light scattering technique. These two co-registered signals are obtained by transilluminating a single digit (e.g. finger) which produces quasi-periodic waveforms derived from the cardiac cycle. Because PPG and SPG waveforms probe vascular expansion and flow, respectively, in cm-thick tissue, these complementary phenomena are offset in time and have rich dynamic features. We characterize the timing offset and harmonic content of the waveforms in 16 human subjects and demonstrate physiologic relevance for assessing microvascular flow and resistance.

摘要

在这项工作中,我们引入了一种改进形式的激光散斑成像(LSI),称为固定透射散斑分析(ATSA),它使用单个相干光源来探测两种生理信号:一种与搏动性血管扩张有关(传统上称为光电容积脉搏波(PPG)波形),另一种与搏动性血管血流有关(在此称为散斑容积脉搏波(SPG)波形)。PPG信号通过记录强度波动来确定,而SPG信号则通过LSI动态光散射技术来确定。这两个共同记录的信号是通过对单个手指(例如手指)进行透射照明获得的,该手指会产生源自心动周期的准周期波形。由于PPG和SPG波形分别探测厘米厚组织中的血管扩张和血流,这些互补现象在时间上是错开的,并且具有丰富的动态特征。我们对16名人类受试者的波形定时偏移和谐波含量进行了表征,并证明了其在评估微血管血流和阻力方面的生理相关性。

相似文献

1
Wearable speckle plethysmography (SPG) for characterizing microvascular flow and resistance.
Biomed Opt Express. 2018 Jul 30;9(8):3937-3952. doi: 10.1364/BOE.9.003937. eCollection 2018 Aug 1.
2
Comparison of speckleplethysmographic (SPG) and photoplethysmographic (PPG) imaging by Monte Carlo simulations and measurements.
Biomed Opt Express. 2018 Aug 15;9(9):4306-4316. doi: 10.1364/BOE.9.004306. eCollection 2018 Sep 1.
6
7
Rolling shutter speckle plethysmography for quantitative cardiovascular monitoring.
Biomed Opt Express. 2024 Feb 9;15(3):1540-1552. doi: 10.1364/BOE.511755. eCollection 2024 Mar 1.
8
Pulsatile blood flow in human bone assessed by laser-Doppler flowmetry and the interpretation of photoplethysmographic signals.
Physiol Meas. 2013 Mar;34(3):N25-40. doi: 10.1088/0967-3334/34/3/N25. Epub 2013 Feb 26.
9
Optical coherence tomography angiography measures blood pulsatile waveforms at variable tissue depths.
Quant Imaging Med Surg. 2021 Mar;11(3):907-917. doi: 10.21037/qims-20-778.
10
Fiber-based laser speckle imaging for the detection of pulsatile flow.
Lasers Surg Med. 2015 Aug;47(6):520-5. doi: 10.1002/lsm.22370.

引用本文的文献

1
Speckle contrast optical spectroscopy for cuffless blood pressure estimation based on microvascular blood flow and volume oscillations.
Biomed Opt Express. 2025 Jul 2;16(8):3004-3016. doi: 10.1364/BOE.560022. eCollection 2025 Aug 1.
2
Non-invasive optical and laboratory hematologic biomarkers correlate in patients with sickle cell disease.
Biomed Opt Express. 2024 Jul 26;15(8):4829-4841. doi: 10.1364/BOE.527770. eCollection 2024 Aug 1.
4
Measuring pulsatile cortical blood flow and volume during carotid endarterectomy.
Biomed Opt Express. 2024 Feb 2;15(3):1355-1369. doi: 10.1364/BOE.507730. eCollection 2024 Mar 1.
5
Rolling shutter speckle plethysmography for quantitative cardiovascular monitoring.
Biomed Opt Express. 2024 Feb 9;15(3):1540-1552. doi: 10.1364/BOE.511755. eCollection 2024 Mar 1.
6
Intraprocedural application of a peripheral blood flow monitoring system during endovascular treatment for femoropopliteal disease.
J Vasc Surg Cases Innov Tech. 2023 Nov 20;10(2):101369. doi: 10.1016/j.jvscit.2023.101369. eCollection 2024 Apr.
7
Quantifying tissue properties and absolute hemodynamics using coherent spatial imaging.
J Biomed Opt. 2023 Dec;28(12):127001. doi: 10.1117/1.JBO.28.12.127001. Epub 2023 Dec 19.
8
Pressure stimulus study on acupuncture points with multi-channel multimode-fiber diffuse speckle contrast analysis (MMF-DSCA).
Biomed Opt Express. 2023 Oct 6;14(11):5602-5614. doi: 10.1364/BOE.502447. eCollection 2023 Nov 1.
9
Development and evaluation of a wearable peripheral vascular compensation sensor in a swine model of hemorrhage.
Biomed Opt Express. 2023 Sep 21;14(10):5338-5357. doi: 10.1364/BOE.494720. eCollection 2023 Oct 1.
10
Quantitative hemodynamic imaging: a method to correct the effects of optical properties on laser speckle imaging.
Neurophotonics. 2023 Oct;10(4):045001. doi: 10.1117/1.NPh.10.4.045001. Epub 2023 Oct 3.

本文引用的文献

1
Quantitative real-time optical imaging of the tissue metabolic rate of oxygen consumption.
J Biomed Opt. 2018 Mar;23(3):1-12. doi: 10.1117/1.JBO.23.3.036013.
2
Correcting for motion artifact in handheld laser speckle images.
J Biomed Opt. 2018 Mar;23(3):1-7. doi: 10.1117/1.JBO.23.3.036006.
5
Methodological concerns with laser speckle contrast imaging in clinical evaluation of microcirculation.
PLoS One. 2017 Mar 30;12(3):e0174703. doi: 10.1371/journal.pone.0174703. eCollection 2017.
7
Cerebral blood flow is decoupled from blood pressure and linked to EEG bursting after resuscitation from cardiac arrest.
Biomed Opt Express. 2016 Oct 20;7(11):4660-4673. doi: 10.1364/BOE.7.004660. eCollection 2016 Nov 1.
8
Design and evaluation of a miniature laser speckle imaging device to assess gingival health.
J Biomed Opt. 2016 Oct 1;21(10):104002. doi: 10.1117/1.JBO.21.10.104002.
9
Combined effects of scattering and absorption on laser speckle contrast imaging.
J Biomed Opt. 2016 Jul 1;21(7):76002. doi: 10.1117/1.JBO.21.7.076002.
10
Sensitivity of laser speckle contrast imaging to flow perturbations in the cortex.
Biomed Opt Express. 2016 Feb 3;7(3):759-75. doi: 10.1364/BOE.7.000759. eCollection 2016 Mar 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验