Suppr超能文献

管理多患者 3D 质谱成像数据的策略。

Strategies for managing multi-patient 3D mass spectrometry imaging data.

机构信息

The Maastricht Multimodal Molecular Imaging Institute (M4I), Maastricht University, 6229 ER Maastricht, the Netherlands.

Department of Urology, Department of Biomedical Engineering & Physics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.

出版信息

J Proteomics. 2019 Feb 20;193:184-191. doi: 10.1016/j.jprot.2018.10.008. Epub 2018 Oct 19.

Abstract

Mass spectrometry imaging (MSI) has emerged as a powerful tool in biomedical research to reveal the localization of a broad scale of compounds ranging from metabolites to proteins in diseased tissues, such as malignant tumors. MSI is most commonly used for the two-dimensional imaging of tissues from multiple patients or for the three-dimensional (3D) imaging of tissue from a single patient. These applications are potentially introducing a sampling bias on a sample or patient level, respectively. The aim of this study is therefore to investigate the consequences of sampling bias on sample representativeness and on the precision of biomarker discovery for histological grading of human bladder cancers by MSI. We therefore submitted formalin-fixed paraffin-embedded tissues from 14 bladder cancer patients with varying histological grades to 3D analysis by matrix-assisted laser desorption/ionization (MALDI) MSI. We found that, after removing 20% of the data based on novel outlier detection routines for 3D-MSI data based on the evaluation of digestion efficacy and z-directed regression, on average 33% of a sample has to be measured in order to obtain sufficient coverage of the existing biological variance within a tissue sample. SIGNIFICANCE: In this study, 3D MALDI-MSI is applied for the first time on a cohort of bladder cancer patients using formalin-fixed paraffin-embedded (FFPE) tissue of bladder cancer resections. This work portrays the reproducibility that can be achieved when employing an optimized sample preparation and subsequent data evaluation approach. Our data shows the influence of sampling bias on the variability of the results, especially for a small patient cohort. Furthermore, the presented data analysis workflow can be used by others as a 3D FFPE data-analysis pipeline working on multi-patient 3D-MSI studies.

摘要

质谱成像(MSI)已成为生物医学研究中的一种强大工具,可用于揭示从代谢物到蛋白质等多种化合物在病变组织(如恶性肿瘤)中的定位。MSI 最常用于对来自多个患者的组织进行二维成像,或对来自单个患者的组织进行三维(3D)成像。这些应用分别在样本或患者水平上潜在地引入了采样偏差。因此,本研究旨在通过 MSI 研究组织学分级的人类膀胱癌来研究采样偏差对样本代表性和生物标志物发现精度的影响。为此,我们提交了 14 名膀胱癌患者的福尔马林固定石蜡包埋组织,这些患者的组织学分级不同,采用基质辅助激光解吸/电离(MALDI)MSI 进行 3D 分析。我们发现,在基于消化效率评估和 z 向回归的新的 3D-MSI 数据异常值检测例程的基础上,根据数据删除 20%后,平均必须测量 33%的样本,以获得组织样本内现有生物变异的充分覆盖。意义:本研究首次在膀胱癌患者队列中应用 3D MALDI-MSI,使用膀胱癌切除术后的福尔马林固定石蜡包埋(FFPE)组织。这项工作描绘了在采用优化的样本制备和后续数据评估方法时可以实现的可重复性。我们的数据显示了采样偏差对结果变异性的影响,特别是对于小的患者队列。此外,所提出的数据分析工作流程可以被其他人用作在多患者 3D-MSI 研究中运行的 3D FFPE 数据分析管道。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验