Suppr超能文献

基于深度学习规范建模的新颖性检测在帕金森病和自闭症谱系障碍的基于 IMU 的异常运动监测中的应用。

Novelty Detection using Deep Normative Modeling for IMU-Based Abnormal Movement Monitoring in Parkinson's Disease and Autism Spectrum Disorders.

机构信息

Institute for Computing and Information Science, Radboud University, 6525EC Nijmegen, The Netherlands.

Department of Information Engineering and Computer Science, University of Trento, 38123 Trento, Italy.

出版信息

Sensors (Basel). 2018 Oct 19;18(10):3533. doi: 10.3390/s18103533.

Abstract

Detecting and monitoring of abnormal movement behaviors in patients with Parkinson's Disease (PD) and individuals with Autism Spectrum Disorders (ASD) are beneficial for adjusting care and medical treatment in order to improve the patient's quality of life. Supervised methods commonly used in the literature need annotation of data, which is a time-consuming and costly process. In this paper, we propose deep normative modeling as a probabilistic novelty detection method, in which we model the distribution of normal human movements recorded by wearable sensors and try to detect abnormal movements in patients with PD and ASD in a novelty detection framework. In the proposed deep normative model, a movement disorder behavior is treated as an extreme of the normal range or, equivalently, as a deviation from the normal movements. Our experiments on three benchmark datasets indicate the effectiveness of the proposed method, which outperforms one-class SVM and the reconstruction-based novelty detection approaches. Our contribution opens the door toward modeling normal human movements during daily activities using wearable sensors and eventually real-time abnormal movement detection in neuro-developmental and neuro-degenerative disorders.

摘要

检测和监测帕金森病(PD)患者和自闭症谱系障碍(ASD)个体的异常运动行为,有利于调整护理和治疗,从而提高患者的生活质量。文献中常用的监督方法需要对数据进行注释,这是一个耗时且昂贵的过程。在本文中,我们提出了深度规范建模作为一种概率异常检测方法,其中我们对可穿戴传感器记录的正常人体运动分布进行建模,并尝试在新颖性检测框架中检测 PD 和 ASD 患者的异常运动。在提出的深度规范模型中,运动障碍行为被视为正常范围的极值,或者等效地,被视为正常运动的偏差。我们在三个基准数据集上的实验表明了该方法的有效性,该方法优于单类 SVM 和基于重构的新颖性检测方法。我们的贡献为使用可穿戴传感器对日常活动中的正常人体运动进行建模,并最终实现神经发育和神经退行性疾病的实时异常运动检测开辟了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/790b/6211024/ce8fbf95f606/sensors-18-03533-g001.jpg

相似文献

引用本文的文献

7
[Wearable devices: Perspectives on assessing and monitoring human physiological status].[可穿戴设备:评估和监测人体生理状态的视角]
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2023 Dec 25;40(6):1045-1052. doi: 10.7507/1001-5515.202303043.

本文引用的文献

3
Skeleton-Based Abnormal Gait Detection.基于骨架的异常步态检测。
Sensors (Basel). 2016 Oct 26;16(11):1792. doi: 10.3390/s16111792.
8
Automatic detection of freezing of gait events in patients with Parkinson's disease.帕金森病患者步态冻结事件的自动检测。
Comput Methods Programs Biomed. 2013 Apr;110(1):12-26. doi: 10.1016/j.cmpb.2012.10.016. Epub 2012 Nov 26.
9
Gait analysis using wearable sensors.使用可穿戴传感器进行步态分析。
Sensors (Basel). 2012;12(2):2255-83. doi: 10.3390/s120202255. Epub 2012 Feb 16.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验