Suppr超能文献

用于根据心肺运动测试数据诊断患者病情的神经网络方法。

Neural network methods for diagnosing patient conditions from cardiopulmonary exercise testing data.

作者信息

Brown Donald E, Sharma Suchetha, Jablonski James A, Weltman Arthur

机构信息

School of Data Science, University of Virginia, Charlottesville, VA, USA.

Department of Engineering Systems and Environment, University of Virginia, Charlottesville, VA, USA.

出版信息

BioData Min. 2022 Aug 13;15(1):16. doi: 10.1186/s13040-022-00299-6.

Abstract

BACKGROUND

Cardiopulmonary exercise testing (CPET) provides a reliable and reproducible approach to measuring fitness in patients and diagnosing their health problems. However, the data from CPET consist of multiple time series that require training to interpret. Part of this training teaches the use of flow charts or nested decision trees to interpret the CPET results. This paper investigates the use of two machine learning techniques using neural networks to predict patient health conditions with CPET data in contrast to flow charts. The data for this investigation comes from a small sample of patients with known health problems and who had CPET results. The small size of the sample data also allows us to investigate the use and performance of deep learning neural networks on health care problems with limited amounts of labeled training and testing data.

METHODS

This paper compares the current standard for interpreting and classifying CPET data, flowcharts, to neural network techniques, autoencoders and convolutional neural networks (CNN). The study also investigated the performance of principal component analysis (PCA) with logistic regression to provide an additional baseline of comparison to the neural network techniques.

RESULTS

The patients in the sample had two primary diagnoses: heart failure and metabolic syndrome. All model-based testing was done with 5-fold cross-validation and metrics of precision, recall, F1 score, and accuracy. As a baseline for comparison to our models, the highest performing flow chart method achieved an accuracy of 77%. Both PCA regression and CNN achieved an average accuracy of 90% and outperformed the flow chart methods on all metrics. The autoencoder with logistic regression performed the best on each of the metrics and had an average accuracy of 94%.

CONCLUSIONS

This study suggests that machine learning and neural network techniques, in particular, can provide higher levels of accuracy with CPET data than traditional flowchart methods. Further, the CNN performed well with a small data set showing that these techniques can be designed to perform well on small data problems that are often found in health care and the life sciences. Further testing with larger data sets is needed to continue evaluating the use of machine learning to interpret CPET data.

摘要

背景

心肺运动试验(CPET)为测量患者的健康状况和诊断其健康问题提供了一种可靠且可重复的方法。然而,CPET数据由多个时间序列组成,需要经过培训才能进行解读。这种培训的一部分内容是教授如何使用流程图或嵌套决策树来解读CPET结果。本文研究了与流程图相比,使用两种基于神经网络的机器学习技术来利用CPET数据预测患者健康状况的情况。本研究的数据来自一小部分已知健康问题且有CPET结果的患者。样本数据量小也使我们能够研究深度学习神经网络在标记训练和测试数据量有限的医疗保健问题上的使用情况和性能。

方法

本文将解释和分类CPET数据的当前标准——流程图,与神经网络技术、自动编码器和卷积神经网络(CNN)进行了比较。该研究还调查了主成分分析(PCA)与逻辑回归的性能,以提供与神经网络技术进行比较的额外基线。

结果

样本中的患者有两种主要诊断:心力衰竭和代谢综合征。所有基于模型的测试均采用5折交叉验证,并使用精度、召回率、F1分数和准确率等指标。作为与我们模型比较的基线,性能最佳的流程图方法的准确率为77%。PCA回归和CNN的平均准确率均达到90%,在所有指标上均优于流程图方法。带有逻辑回归的自动编码器在每个指标上表现最佳,平均准确率为94%。

结论

本研究表明,机器学习和神经网络技术,尤其是在处理CPET数据时,比传统的流程图方法能提供更高的准确率。此外,CNN在小数据集上表现良好,表明这些技术可以设计为在医疗保健和生命科学中常见的小数据问题上表现出色。需要使用更大的数据集进行进一步测试,以继续评估机器学习在解读CPET数据方面的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99fe/9375280/2f4131ad7617/13040_2022_299_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验