Suppr超能文献

三维数值模拟与表面声波微流控中边界驱动流的实验研究。

Three-dimensional numerical simulation and experimental investigation of boundary-driven streaming in surface acoustic wave microfluidics.

机构信息

Department of Mechanical Engineering and Material Science, Duke University, NC 27707, USA.

Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA.

出版信息

Lab Chip. 2018 Dec 7;18(23):3645-3654. doi: 10.1039/c8lc00589c. Epub 2018 Oct 26.

Abstract

Acoustic streaming has been widely used in microfluidics to manipulate various micro-/nano-objects. In this work, acoustic streaming activated by interdigital transducers (IDT) immersed in highly viscous oil is studied numerically and experimentally. In particular, we developed a modeling strategy termed the "slip velocity method" that enables a 3D simulation of surface acoustic wave microfluidics in a large domain (4 × 4 × 2 mm) and at a high frequency (23.9 MHz). The experimental and numerical results both show that on top of the oil, all the acoustic streamlines converge at two horizontal stagnation points above the two symmetric sides of the IDT. At these two stagnation points, water droplets floating on the oil can be trapped. Based on these characteristics of the acoustic streaming field, we designed a surface acoustic wave microfluidic device with an integrated IDT array fabricated on a 128°YX LiNbO substrate to perform programmable, contactless droplet manipulation. By activating IDTs accordingly, the water droplets on the oil can be moved to the corresponding traps. With its excellent capability for manipulating droplets in a highly programmable, controllable manner, our surface acoustic wave microfluidic devices are valuable for on-chip contactless sample handling and chemical reactions.

摘要

声流已广泛应用于微流控领域,用于操控各种微/纳物体。在这项工作中,数值模拟和实验研究了浸在高粘度油中的叉指换能器 (IDT) 激发的声流。特别地,我们开发了一种称为“滑移速度法”的建模策略,能够在大域 (4×4×2mm) 和高频 (23.9MHz) 下对表面声波微流进行 3D 模拟。实验和数值结果均表明,在油面上,所有声流线在 IDT 两个对称侧上方的两个水平驻点处汇聚。在这两个驻点处,可以捕获浮在油上的液滴。基于声流场的这些特性,我们设计了一种带有集成 IDT 阵列的表面声波微流控器件,该器件在 128°YX LiNbO 衬底上制造,用于执行可编程、非接触式液滴操作。通过相应地激活 IDT,可以将油上的液滴移动到相应的陷阱中。我们的表面声波微流控器件具有高度可编程、可控地操控液滴的优异能力,对于芯片上的非接触式样品处理和化学反应非常有价值。

相似文献

2
Contactless, programmable acoustofluidic manipulation of objects on water.
Lab Chip. 2019 Oct 9;19(20):3397-3404. doi: 10.1039/c9lc00465c.
3
Development of Lamb Wave-Based Unidirectional Transducers Toward Highly Efficient Microfluidic Applications.
IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Apr;69(4):1549-1555. doi: 10.1109/TUFFC.2022.3150975. Epub 2022 Mar 30.
4
Acoustic streaming of microparticles using graphene-based interdigital transducers.
Nanotechnology. 2021 Jun 22;32(37). doi: 10.1088/1361-6528/ac0473.
6
Three-dimensional modeling and experimentation of microfluidic devices driven by surface acoustic wave.
Ultrasonics. 2023 Mar;129:106914. doi: 10.1016/j.ultras.2022.106914. Epub 2022 Dec 12.
7
An on-chip, multichannel droplet sorter using standing surface acoustic waves.
Anal Chem. 2013 Jun 4;85(11):5468-74. doi: 10.1021/ac400548d. Epub 2013 May 23.
8
The complexity of surface acoustic wave fields used for microfluidic applications.
Ultrasonics. 2020 Aug;106:106160. doi: 10.1016/j.ultras.2020.106160. Epub 2020 Apr 14.
9

引用本文的文献

1
Enhanced Micromixing Using Surface Acoustic Wave Devices: Fundamentals, Designs, and Applications.
Micromachines (Basel). 2025 May 25;16(6):619. doi: 10.3390/mi16060619.
2
A Review of SAW-Based Micro- and Nanoparticle Manipulation in Microfluidics.
Sensors (Basel). 2025 Mar 4;25(5):1577. doi: 10.3390/s25051577.
3
Acoustofluidic Diversity Achieved by Multiple Modes of Acoustic Waves Generated on Piezoelectric-Film-Coated Aluminum Sheets.
ACS Appl Mater Interfaces. 2024 Aug 28;16(34):45119-45130. doi: 10.1021/acsami.4c06480. Epub 2024 Aug 15.
4
Aerosol jet printing of surface acoustic wave microfluidic devices.
Microsyst Nanoeng. 2024 Jan 1;10:2. doi: 10.1038/s41378-023-00606-z. eCollection 2024.
5
Acoustofluidic Interfaces for the Mechanobiological Secretome of MSCs.
Nat Commun. 2023 Nov 22;14(1):7639. doi: 10.1038/s41467-023-43239-6.
7
Acoustofluidic multi-well plates for enrichment of micro/nano particles and cells.
Lab Chip. 2020 Sep 21;20(18):3399-3409. doi: 10.1039/d0lc00378f. Epub 2020 Aug 11.
9
Contactless, programmable acoustofluidic manipulation of objects on water.
Lab Chip. 2019 Oct 9;19(20):3397-3404. doi: 10.1039/c9lc00465c.
10
Separating extracellular vesicles and lipoproteins via acoustofluidics.
Lab Chip. 2019 Mar 27;19(7):1174-1182. doi: 10.1039/c8lc01134f.

本文引用的文献

1
Standing Surface Acoustic Wave (SSAW)-Based Fluorescence-Activated Cell Sorter.
Small. 2018 Oct;14(40):e1801996. doi: 10.1002/smll.201801996. Epub 2018 Aug 31.
2
Digital acoustofluidics enables contactless and programmable liquid handling.
Nat Commun. 2018 Jul 26;9(1):2928. doi: 10.1038/s41467-018-05297-z.
4
Isolation of exosomes from whole blood by integrating acoustics and microfluidics.
Proc Natl Acad Sci U S A. 2017 Oct 3;114(40):10584-10589. doi: 10.1073/pnas.1709210114. Epub 2017 Sep 18.
5
3D measurement and simulation of surface acoustic wave driven fluid motion: a comparison.
Lab Chip. 2017 Jun 13;17(12):2104-2114. doi: 10.1039/c7lc00184c.
6
Huygens-Fresnel Acoustic Interference and the Development of Robust Time-Averaged Patterns from Traveling Surface Acoustic Waves.
Phys Rev Lett. 2017 Apr 14;118(15):154501. doi: 10.1103/PhysRevLett.118.154501. Epub 2017 Apr 12.
7
Selective particle and cell capture in a continuous flow using micro-vortex acoustic streaming.
Lab Chip. 2017 May 16;17(10):1769-1777. doi: 10.1039/c7lc00215g.
8
Enriching Nanoparticles via Acoustofluidics.
ACS Nano. 2017 Jan 24;11(1):603-612. doi: 10.1021/acsnano.6b06784. Epub 2017 Jan 9.
9
Holograms for acoustics.
Nature. 2016 Sep 22;537(7621):518-22. doi: 10.1038/nature19755.
10
Controlling the motion of multiple objects on a Chladni plate.
Nat Commun. 2016 Sep 9;7:12764. doi: 10.1038/ncomms12764.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验