Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland, United States of America.
Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway.
PLoS Biol. 2018 Oct 26;16(10):e2006422. doi: 10.1371/journal.pbio.2006422. eCollection 2018 Oct.
Temporal analysis of sound is fundamental to auditory processing throughout the animal kingdom. Echolocating bats are powerful models for investigating the underlying mechanisms of auditory temporal processing, as they show microsecond precision in discriminating the timing of acoustic events. However, the neural basis for microsecond auditory discrimination in bats has eluded researchers for decades. Combining extracellular recordings in the midbrain inferior colliculus (IC) and mathematical modeling, we show that microsecond precision in registering stimulus events emerges from synchronous neural firing, revealed through low-latency variability of stimulus-evoked extracellular field potentials (EFPs, 200-600 Hz). The temporal precision of the EFP increases with the number of neurons firing in synchrony. Moreover, there is a functional relationship between the temporal precision of the EFP and the spectrotemporal features of the echolocation calls. In addition, EFP can measure the time difference of simulated echolocation call-echo pairs with microsecond precision. We propose that synchronous firing of populations of neurons operates in diverse species to support temporal analysis for auditory localization and complex sound processing.
声音的时间分析是整个动物王国听觉处理的基础。回声定位蝙蝠是研究听觉时间处理基础机制的有力模型,因为它们在区分声事件的时间上表现出微秒级的精度。然而,几十年来,研究人员一直未能揭示蝙蝠微秒级听觉辨别能力的神经基础。通过在中脑下丘(IC)进行细胞外记录和数学建模,我们表明,通过刺激诱发的细胞外场电位(EFPs,200-600 Hz)的低潜伏期变异性来揭示的同步神经放电,产生了对刺激事件的微秒级精确记录。EFP 的时间精度随同步放电的神经元数量的增加而增加。此外,EFP 的时间精度与回声定位叫声的频谱时间特征之间存在功能关系。此外,EFP 可以以微秒级的精度测量模拟回声定位叫声-回声对的时间差。我们提出,神经元群体的同步放电在不同物种中运作,以支持听觉定位和复杂声音处理的时间分析。