Suppr超能文献

三维挤压式生物打印单网络和双网络水凝胶,其中包含动态共价交联。

Three-dimensional extrusion bioprinting of single- and double-network hydrogels containing dynamic covalent crosslinks.

机构信息

Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104.

出版信息

J Biomed Mater Res A. 2018 Apr;106(4):865-875. doi: 10.1002/jbm.a.36323. Epub 2018 Jan 23.

Abstract

The fabrication of three-dimensional (3D) scaffolds is indispensable to tissue engineering and 3D printing is emerging as an important approach towards this. Hydrogels are often used as inks in extrusion-based 3D printing, including with encapsulated cells; however, numerous challenging requirements exist, including appropriate viscosity, the ability to stabilize after extrusion, and cytocompatibility. Here, we present a shear-thinning and self-healing hydrogel crosslinked through dynamic covalent chemistry for 3D bioprinting. Specifically, hyaluronic acid was modified with either hydrazide or aldehyde groups and mixed to form hydrogels containing a dynamic hydrazone bond. Due to their shear-thinning and self-healing properties, the hydrogels could be extruded for 3D printing of structures with high shape fidelity, stability to relaxation, and cytocompatibility with encapsulated fibroblasts (>80% viability). Forces for extrusion and filament sizes were dependent on parameters such as material concentration and needle gauge. To increase scaffold functionality, a second photocrosslinkable interpenetrating network was included that was used for orthogonal photostiffening and photopatterning through a thiol-ene reaction. Photostiffening increased the scaffold's modulus (∼300%) while significantly decreasing erosion (∼70%), whereas photopatterning allowed for spatial modification of scaffolds with dyes. Overall, this work introduces a simple approach to both fabricate and modify 3D printed scaffolds. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 865-875, 2018.

摘要

三维(3D)支架的制造对于组织工程来说是不可或缺的,而 3D 打印正成为一种重要的方法。水凝胶通常用作挤出式 3D 打印的墨水,包括封装细胞的水凝胶;然而,存在许多挑战性的要求,包括适当的粘度、挤出后稳定的能力和细胞相容性。在这里,我们提出了一种通过动态共价化学交联的剪切稀化和自修复水凝胶,用于 3D 生物打印。具体来说,透明质酸被修饰为酰肼或醛基,并混合形成含有动态腙键的水凝胶。由于其剪切稀化和自修复特性,水凝胶可以挤出用于 3D 打印具有高形状保真度、对松弛稳定的结构和对封装成纤维细胞的细胞相容性(>80%活力)。挤出力和丝径大小取决于材料浓度和针规等参数。为了增加支架的功能,还包括了第二个光交联互穿网络,通过硫醇-烯反应用于正交光交联和光图案化。光交联增加了支架的模量(300%),同时显著降低了侵蚀(70%),而光图案化允许用染料对支架进行空间修饰。总的来说,这项工作提出了一种简单的方法来制造和修饰 3D 打印的支架。© 2018 威利父子公司。J 生物医学材料 Res 部分 A:106A:865-875, 2018.

相似文献

1
Three-dimensional extrusion bioprinting of single- and double-network hydrogels containing dynamic covalent crosslinks.
J Biomed Mater Res A. 2018 Apr;106(4):865-875. doi: 10.1002/jbm.a.36323. Epub 2018 Jan 23.
3
Gallol-derived ECM-mimetic adhesive bioinks exhibiting temporal shear-thinning and stabilization behavior.
Acta Biomater. 2019 Sep 1;95:165-175. doi: 10.1016/j.actbio.2018.10.028. Epub 2018 Oct 24.
4
Three-dimensional printing of chemically crosslinked gelatin hydrogels for adipose tissue engineering.
Biofabrication. 2020 Jan 16;12(2):025001. doi: 10.1088/1758-5090/ab56f9.
5
Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication.
ACS Appl Mater Interfaces. 2020 Jan 29;12(4):4343-4357. doi: 10.1021/acsami.9b22062. Epub 2020 Jan 17.
6
Stretchable and self-healable hyaluronate-based hydrogels for three-dimensional bioprinting.
Carbohydr Polym. 2022 Nov 1;295:119846. doi: 10.1016/j.carbpol.2022.119846. Epub 2022 Jul 9.
7
Employing PEG crosslinkers to optimize cell viability in gel phase bioinks and tailor post printing mechanical properties.
Acta Biomater. 2019 Nov;99:121-132. doi: 10.1016/j.actbio.2019.09.007. Epub 2019 Sep 17.
8
Nanocellulose Reinforced Hyaluronan-Based Bioinks.
Biomacromolecules. 2023 Jul 10;24(7):3086-3093. doi: 10.1021/acs.biomac.3c00168. Epub 2023 Jun 21.
10
3D bioprinting of dual-crosslinked nanocellulose hydrogels for tissue engineering applications.
J Mater Chem B. 2021 Aug 21;9(31):6163-6175. doi: 10.1039/d1tb00624j. Epub 2021 Jul 21.

引用本文的文献

1
Rapid and Inexpensive Image-Guided Grayscale Biomaterial Customization via LCD Printing.
J Biomed Mater Res A. 2025 Apr;113(4):e37897. doi: 10.1002/jbm.a.37897.
2
Dynamic Bonds in Biopolymers: Enhancing Performance and Properties.
Polymers (Basel). 2025 Feb 9;17(4):457. doi: 10.3390/polym17040457.
3
Myofibers cultured in viscoelastic hydrogels reveal the effects of integrin-binding and mechanosensing on muscle satellite cells.
Acta Biomater. 2025 Jan 15;192:48-60. doi: 10.1016/j.actbio.2024.11.044. Epub 2024 Nov 28.
4
Ligand presentation controls collective MSC response to matrix stress relaxation in hybrid PEG-HA hydrogels.
Bioact Mater. 2024 Oct 17;44:152-163. doi: 10.1016/j.bioactmat.2024.10.007. eCollection 2025 Feb.
6
Boronate Ester Hydrogels for Biomedical Applications: Challenges and Opportunities.
Chem Mater. 2024 Jul 9;36(14):6674-6695. doi: 10.1021/acs.chemmater.4c00507. eCollection 2024 Jul 23.
8
Viscoelasticity in 3D Cell Culture and Regenerative Medicine: Measurement Techniques and Biological Relevance.
ACS Mater Au. 2024 Jun 18;4(4):354-384. doi: 10.1021/acsmaterialsau.3c00038. eCollection 2024 Jul 10.
9
Engineering a Hydrazone and Triazole Crosslinked Hydrogel for Extrusion-Based Printing and Cell Delivery.
Adv Healthc Mater. 2024 Aug;13(20):e2400062. doi: 10.1002/adhm.202400062. Epub 2024 Jun 3.
10
Shear Thickening Behavior in Injectable Tetra-PEG Hydrogels Cross-Linked via Dynamic Thia-Michael Addition Bonds.
Macromolecules. 2023 Oct 10;56(19):7795-7807. doi: 10.1021/acs.macromol.3c00780. Epub 2023 Sep 22.

本文引用的文献

1
3D Bioprinting of Spatially Heterogeneous Collagen Constructs for Cartilage Tissue Engineering.
ACS Biomater Sci Eng. 2016 Oct 10;2(10):1800-1805. doi: 10.1021/acsbiomaterials.6b00288. Epub 2016 Aug 4.
2
3D Printing of Shear-Thinning Hyaluronic Acid Hydrogels with Secondary Cross-Linking.
ACS Biomater Sci Eng. 2016 Oct 10;2(10):1743-1751. doi: 10.1021/acsbiomaterials.6b00158. Epub 2016 Jun 9.
4
The design of reversible hydrogels to capture extracellular matrix dynamics.
Nat Rev Mater. 2016;1. doi: 10.1038/natrevmats.2015.12. Epub 2016 Feb 2.
5
Shear-thinning and self-healing hydrogels as injectable therapeutics and for 3D-printing.
Nat Protoc. 2017 Aug;12(8):1521-1541. doi: 10.1038/nprot.2017.053. Epub 2017 Jul 6.
6
A Generalizable Strategy for the 3D Bioprinting of Hydrogels from Nonviscous Photo-crosslinkable Inks.
Adv Mater. 2017 Feb;29(8). doi: 10.1002/adma.201604983. Epub 2016 Dec 16.
7
Design and Printing Strategies in 3D Bioprinting of Cell-Hydrogels: A Review.
Adv Healthc Mater. 2016 Nov;5(22):2856-2865. doi: 10.1002/adhm.201600435. Epub 2016 Oct 21.
8
Strong and Rapidly Self-Healing Hydrogels: Potential Hemostatic Materials.
Adv Healthc Mater. 2016 Nov;5(21):2813-2822. doi: 10.1002/adhm.201600720. Epub 2016 Sep 26.
9
Bio-printing cell-laden Matrigel-agarose constructs.
J Biomater Appl. 2016 Nov;31(5):684-692. doi: 10.1177/0885328216669238. Epub 2016 Sep 16.
10
Self-Activated Healable Hydrogels with Reversible Temperature Responsiveness.
ACS Appl Mater Interfaces. 2016 Sep 28;8(38):25544-51. doi: 10.1021/acsami.6b08279. Epub 2016 Sep 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验