Suppr超能文献

聚合物基体和碳纳米管对微生物燃料电池中电能产生的影响。

Effects of Polymer Matrices and Carbon Nanotubes on the Generation of Electric Energy in a Microbial Fuel Cell.

作者信息

Plekhanova Yulia, Tarasov Sergei, Kolesov Vladimir, Kuznetsova Iren, Signore Maria, Quaranta Fabio, Reshetilov Anatoly

机构信息

FSBIS G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino 142290, Russia.

FSBIS V.A. Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow 125009, Russia.

出版信息

Membranes (Basel). 2018 Oct 25;8(4):99. doi: 10.3390/membranes8040099.

Abstract

The anode of a microbial fuel cell (MFC) was formed on a graphite electrode and immobilized VKM-1280 bacterial cells. Immobilization was performed in chitosan, poly(vinyl alcohol) or -vinylpyrrolidone-modified poly(vinyl alcohol). Ethanol was used as substrate. The anode was modified using multiwalled carbon nanotubes. The aim of the modification was to create a conductive network between cell lipid membranes, containing exposed pyrroloquinoline quinone (PQQ)-dependent alcoholdehydrogenases, and the electrode to facilitate electron transfer in the system. The bioelectrochemical characteristics of modified anodes at various cell/polymer ratios were assessed via current density, power density, polarization curves and impedance spectres. Microbial fuel cells based on chitosan at a matrix/cell volume ratio of 5:1 produced maximal power characteristics of the system (8.3 μW/cm²) at a minimal resistance (1111 Ohm cm²). Modification of the anode by multiwalled carbon nanotubes (MWCNT) led to a slight decrease of internal resistance (down to 1078 Ohm cm²) and to an increase of generated power density up to 10.6 μW/cm². We explored the possibility of accumulating electric energy from an MFC on a 6800-μF capacitor via a boost converter. Generated voltage was increased from 0.3 V up to 3.2 V. Accumulated energy was used to power a Clark-type biosensor and a Bluetooth transmitter with three sensors, a miniature electric motor and a light-emitting diode.

摘要

微生物燃料电池(MFC)的阳极在石墨电极上形成,并固定了VKM - 1280细菌细胞。固定化过程在壳聚糖、聚乙烯醇或乙烯基吡咯烷酮改性的聚乙烯醇中进行。使用乙醇作为底物。阳极使用多壁碳纳米管进行改性。改性的目的是在含有暴露的吡咯喹啉醌(PQQ)依赖性醇脱氢酶的细胞脂质膜与电极之间创建一个导电网络,以促进系统中的电子转移。通过电流密度、功率密度、极化曲线和阻抗谱评估了不同细胞/聚合物比例下改性阳极的生物电化学特性。基于壳聚糖的微生物燃料电池在基质/细胞体积比为5:1时,在最小电阻(1111欧姆·平方厘米)下产生了系统的最大功率特性(8.3微瓦/平方厘米)。用多壁碳纳米管(MWCNT)对阳极进行改性导致内阻略有降低(降至1078欧姆·平方厘米),并使产生的功率密度增加到10.6微瓦/平方厘米。我们探索了通过升压转换器在6800微法电容器上从MFC积累电能的可能性。产生的电压从0.3伏增加到3.2伏。积累的能量用于为克拉克型生物传感器和带有三个传感器的蓝牙发射器、微型电动机和发光二极管供电。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fb4/6315946/80bb95bfb396/membranes-08-00099-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验