Suppr超能文献

高级别T1期尿路上皮癌的管理

Management of High-grade T1 Urothelial Carcinoma.

作者信息

Reisz Peter A, Laviana Aaron A, Chang Sam S

机构信息

Department of Urology, Vanderbilt University Medical Center, A-1302 Medical Center North, Nashville, TN, 37232, USA.

出版信息

Curr Urol Rep. 2018 Oct 26;19(12):103. doi: 10.1007/s11934-018-0850-8.

Abstract

PURPOSE OF REVIEW

The optimal management of high-grade T1 (HGT1) urothelial carcinoma (UC) is complex given its high rate of recurrence, progression, and cancer-specific mortality as well as its clinical variability. Our current treatment paradigm has been supplemented by recent data describing the expanding options for salvage intravesical therapy, bladder preservation, and the promising role of molecular epidemiology. In the current review, we attempt to summarize and critically analyze these studies.

RECENT FINDINGS

Evidence describing new intravesical therapies has demonstrated an adequate safety profile and some efficacy in BCG-unresponsive patients who desire bladder preservation. However, response rates are still poor in this high-risk patient population, and it is important to keep these data in perspective when counseling patients. Concomitantly, the continued molecular characterization of non-muscle-invasive bladder cancer may suggest potential therapeutic targets as well as predictors of treatment response in the future. The integration of new intravesical therapies and molecular data into the current treatment paradigm for HGT1 urothelial carcinoma will be critical to improving oncologic outcomes in this particularly high-risk population.

摘要

综述目的

鉴于高级别T1期(HGT1)尿路上皮癌(UC)的高复发率、进展率和癌症特异性死亡率以及其临床变异性,其最佳管理较为复杂。近期有关挽救性膀胱内治疗、膀胱保留的扩展选择以及分子流行病学的前景作用的数据,补充了我们目前的治疗模式。在本综述中,我们试图总结并批判性地分析这些研究。

最新发现

描述新膀胱内治疗方法的证据表明,对于希望保留膀胱的卡介苗无反应患者,其安全性良好且有一定疗效。然而,在这个高风险患者群体中,缓解率仍然很低,在为患者提供咨询时,正确看待这些数据很重要。与此同时,非肌层浸润性膀胱癌的持续分子特征分析可能会提示未来潜在的治疗靶点以及治疗反应的预测指标。将新的膀胱内治疗方法和分子数据整合到目前HGT1尿路上皮癌的治疗模式中,对于改善这个特别高风险人群的肿瘤学结局至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验