Suppr超能文献

增强型特征选择器:预测 P-糖蛋白抑制剂和底物的案例研究。

Boosted feature selectors: a case study on prediction P-gp inhibitors and substrates.

机构信息

Department of Computing and Numerical Analysis, University of Córdoba, Campus de Rabanales, Albert Einstein Building, 14071, Córdoba, Spain.

出版信息

J Comput Aided Mol Des. 2018 Nov;32(11):1273-1294. doi: 10.1007/s10822-018-0171-5. Epub 2018 Oct 26.

Abstract

Feature selection is commonly used as a preprocessing step to machine learning for improving learning performance, lowering computational complexity and facilitating model interpretation. This paper proposes the application of boosting feature selection to improve the classification performance of standard feature selection algorithms evaluated for the prediction of P-gp inhibitors and substrates. Two well-known classification algorithms, decision trees and support vector machines, were used to classify the chemical compounds. The experimental results showed better performance for boosting feature selection with respect to the standard feature selection algorithms while maintaining the capability for feature reduction.

摘要

特征选择通常被用作机器学习的预处理步骤,以提高学习性能、降低计算复杂度和促进模型解释。本文提出将提升特征选择应用于改善标准特征选择算法的分类性能,这些算法用于预测 P-糖蛋白抑制剂和底物。使用两种著名的分类算法,决策树和支持向量机,对化合物进行分类。实验结果表明,在保持特征降维能力的同时,提升特征选择相对于标准特征选择算法具有更好的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验