Rastogi Pulkit, Sharma Prashant, Varma Neelam, Sukhachev Dmitry, Kaushal Naveen, Bihana Ishwar, Sachdeva Man Updesh Singh, Naseem Shano, Malhotra Pankaj
1Department of Hematology, Postgraduate Institute of Medical Education and Research, Level 5, Research Block A, Sector 12, Chandigarh, 160012 India.
LabTech Manpower Ltd, Saint Petersburg, Russia.
Indian J Hematol Blood Transfus. 2018 Oct;34(4):623-631. doi: 10.1007/s12288-018-0921-5. Epub 2018 Jan 20.
Automated blood counts revealing lymphocytosis necessitate smear reviews. Even expert morphological evaluation may however, fail to differentiate a benign-versus-malignant etiology without further testing. Automated analyser-derived quantitative data on leukocyte cell populations remain undertested for distinguishing such etiologies. Instrument manufacturers claim that if successful, they may be used to generate software flags that help under-resourced laboratories better triage hemogram specimens requiring further testing. We tested the diagnostic accuracy of volume-conductivity-scatter (VCS) indices together with complete blood count (CBC) parameters in such scenarios. We compared LH780-derived (Beckman Coulter, FL, USA) CBC + VCS parameters from patients with clonal lymphoproliferations (n = 42, including 30 chronic lymphocytic leukemia cases) versus 83 controls with absolute or relative lymphocytosis (derivation cohort). Diagnostic performances of 11 logistic regression equations derived were subsequently evaluated on two specific validation cohorts (n = 130 and n = 1465). Clonal lymphocytoses showed significantly lower hemoglobin and higher leukocyte counts but similar lymphocyte percentages (LY %) vis-à-vis controls. The most significant, albeit overlapping predictor of clonality was the absolute lymphocyte count, LY# (47.8 ± 48.4 × 10/L vs. 2.9 ± 1.4 × 10/L in clonal vs. benign cases). In eleven logistic regression equations constructed using four combinatorial approaches, only the models with LY# (highest sensitivity/specificity of 99.3%/100%) and the lymphocytic VCS parameters alone (highest sensitivity/specificity of 76.2%/90.2%) performed consistently in both validation cohorts. Lymphocytic VCS parameters were moderately successful in distinguishing benign-versus-malignant lymphocytes. Other approaches of CBC-plus-VCS parameters did not sustain their initial excellent performances in the validation cohorts, highlighting a need for careful appraisal and better standardization of automated cellular analysis technologies.
自动血细胞计数显示淋巴细胞增多时需要进行涂片复查。然而,即使是专家进行的形态学评估,若不进行进一步检测,也可能无法区分良性与恶性病因。自动分析仪得出的白细胞细胞群定量数据在区分此类病因方面仍未得到充分检验。仪器制造商声称,如果成功,这些数据可用于生成软件标记,帮助资源不足的实验室更好地对需要进一步检测的血常规标本进行分类。我们在此类情况下测试了体积-电导率-散射(VCS)指数以及全血细胞计数(CBC)参数的诊断准确性。我们比较了来自克隆性淋巴细胞增殖患者(n = 42,包括30例慢性淋巴细胞白血病病例)与83例有绝对或相对淋巴细胞增多的对照者(推导队列)的LH780(美国佛罗里达州贝克曼库尔特公司)CBC + VCS参数。随后在两个特定的验证队列(n = 130和n = 1465)中评估了所推导的11个逻辑回归方程的诊断性能。与对照者相比,克隆性淋巴细胞增多症患者的血红蛋白显著降低,白细胞计数升高,但淋巴细胞百分比(LY%)相似。克隆性的最显著预测指标(尽管有重叠)是绝对淋巴细胞计数LY#(克隆性病例与良性病例分别为47.8 ± 48.4×10⁹/L和2.9 ± 1.4×10⁹/L)。在使用四种组合方法构建的11个逻辑回归方程中,只有包含LY#的模型(最高灵敏度/特异性为99.3%/100%)和仅包含淋巴细胞VCS参数的模型(最高灵敏度/特异性为76.2%/90.2%)在两个验证队列中表现一致。淋巴细胞VCS参数在区分良性与恶性淋巴细胞方面取得了一定成功。CBC加VCS参数的其他方法在验证队列中未能保持其最初的优异性能,这凸显了对自动细胞分析技术进行仔细评估和更好标准化的必要性。