Lee In-Hwan, Discekici Emre H, Shankel Shelby L, Anastasaki Athina, de Alaniz Javier Read, Hawker Craig J, Lunn David J
Materials Research Laboratory, University of California, Santa Barbara, California, 93106, USA.
Department of Chemistry and Biochemistry, University of California, Santa Barbara, California, 93106, USA.
Polym Chem. 2017 Dec 14;8(46):7188-7194. doi: 10.1039/C7PY01702B. Epub 2017 Nov 13.
We report a simple and efficient transformation of thiol and thiocarbonylthio functional groups to bromides using stable and commercially available brominating reagents. This procedure allows for the quantitative conversion of a range of small molecule thiols (including primary, secondary and tertiary) to the corresponding bromides under mild conditions, as well as the facile chain-end modification of polystyrene (PS) homopolymers and block copolymers prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization. Specifically, the direct chain-end bromination of PS prepared by RAFT was achieved, where the introduced terminal bromide remained active for subsequent modification or chain-extension using classical atom transfer radical polymerization (ATRP). This transformation sets the foundation for bridging RAFT and ATRP, two of the most widely used controlled radical polymerization (CRP) strategies, and enables the preparation of chain-end functionalized block copolymers not directly accessible using a single CRP technique.
我们报道了一种使用稳定且可商购的溴化试剂将硫醇和硫代羰基硫官能团简单高效地转化为溴化物的方法。该方法能够在温和条件下将一系列小分子硫醇(包括伯、仲和叔硫醇)定量转化为相应的溴化物,还能对通过可逆加成-断裂链转移(RAFT)聚合制备的聚苯乙烯(PS)均聚物和嵌段共聚物进行便捷的链端修饰。具体而言,实现了通过RAFT制备的PS的直接链端溴化,引入的末端溴化物对于随后使用经典原子转移自由基聚合(ATRP)进行修饰或扩链仍保持活性。这种转化为连接RAFT和ATRP这两种最广泛使用的可控自由基聚合(CRP)策略奠定了基础,并能够制备使用单一CRP技术无法直接获得的链端功能化嵌段共聚物。