Collins Seán, Deane Paul, Ó Gallachóir Brian, Pfenninger Stefan, Staffell Iain
MaREI Centre, Environmental Research Institute, University College Cork, Lee Road, Cork, Ireland.
School of Engineering, University College Cork, Cork, Ireland.
Joule. 2018 Oct 17;2(10):2076-2090. doi: 10.1016/j.joule.2018.06.020.
Weather-dependent renewable energy resources are playing a key role in decarbonizing electricity. There is a growing body of analysis on the impacts of wind and solar variability on power system operation. Existing studies tend to use a single or typical year of generation data, which overlooks the substantial year-to-year fluctuation in weather, or to only consider variation in the meteorological inputs, which overlooks the complex response of an interconnected power system. Here, we address these gaps by combining detailed continent-wide modeling of Europe's future power system with 30 years of historical weather data. The most representative single years are 1989 and 2012, but using multiple years reveals a 5-fold increase in Europe's inter-annual variability of CO emissions and total generation costs from 2015 to 2030. We also find that several metrics generalize to linear functions of variable renewable penetration: CO emissions, curtailment of renewables, wholesale prices, and total system costs.
依赖天气的可再生能源在电力脱碳中发挥着关键作用。关于风能和太阳能变化对电力系统运行影响的分析越来越多。现有研究往往使用单一或典型年份的发电数据,这忽略了天气的大幅逐年波动,或者仅考虑气象输入的变化,这忽略了互联电力系统的复杂响应。在此,我们通过将欧洲未来电力系统的详细大陆范围建模与30年的历史天气数据相结合来填补这些空白。最具代表性的单一年份是1989年和2012年,但使用多年数据显示,从2015年到2030年,欧洲二氧化碳排放量和总发电成本的年际变化增加了5倍。我们还发现,几个指标可以归纳为可变可再生能源渗透率的线性函数:二氧化碳排放量、可再生能源削减量、批发电价和系统总成本。