Suppr超能文献

[三维打印技术在皮肤组织修复中的应用]

[Utilization of three-dimensional printing technology for repairing skin tissue].

作者信息

Lam Yuet-Wai, Ao Ningjian

机构信息

Department of Biomedical Engineering, Jinan University, Guangzhou 510632, P.R.China;Key Laboratory of Biomaterials, Guangdong Provincial Department of Education, Guangzhou 510632, P.R.China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2018 Oct 25;35(5):805-810. doi: 10.7507/1001-5515.201711045.

Abstract

Three-dimensional (3D) printing is a low-cost, high-efficiency production method, which can reduce the current cost and increase the profitability of skin repair material industry nowadays, and develop products with better performance. The 3D printing technology commonly used in the preparation of skin repair materials includes fused deposition molding technology and 3D bioprinting technology. Fused deposition molding technology has the advantages of simple and light equipment, but insufficient material selection. 3D bioprinting technology has more materials to choose from, but the equipment is cumbersome and expensive. In recent years, research on both technologies has focused on the development and application of materials. This article details the principles of fused deposition modeling and 3D bioprinting, research advances in wound dressings and tissue engineering skin production, and future developments in 3D printing on skin tissue repair, including cosmetic restoration and biomimetic tissue engineering. Also, this review prospects the development of 3D printing technology in skin tissue repairment.

摘要

三维(3D)打印是一种低成本、高效率的生产方法,它可以降低当前成本,提高如今皮肤修复材料行业的盈利能力,并开发出性能更好的产品。用于制备皮肤修复材料的3D打印技术包括熔融沉积成型技术和3D生物打印技术。熔融沉积成型技术具有设备简单轻便的优点,但材料选择不足。3D生物打印技术有更多的材料可供选择,但设备笨重且昂贵。近年来,对这两种技术的研究都集中在材料的开发和应用上。本文详细介绍了熔融沉积建模和3D生物打印的原理、伤口敷料和组织工程皮肤生产的研究进展,以及3D打印在皮肤组织修复方面的未来发展,包括美容修复和仿生组织工程。此外,本综述还展望了3D打印技术在皮肤组织修复中的发展。

相似文献

1
[Utilization of three-dimensional printing technology for repairing skin tissue].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2018 Oct 25;35(5):805-810. doi: 10.7507/1001-5515.201711045.
2
Future prospects in 3-dimensional (3D) technology and Mohs micrographic surgery.
J Dermatolog Treat. 2022 Sep;33(6):2810-2812. doi: 10.1080/09546634.2022.2080171. Epub 2022 May 23.
3
3D bioprinting: opportunities for wound dressing development.
Biomed Mater. 2023 Jul 6;18(5). doi: 10.1088/1748-605X/ace228.
4
3D printing for clinical application in otorhinolaryngology.
Eur Arch Otorhinolaryngol. 2017 Dec;274(12):4079-4089. doi: 10.1007/s00405-017-4743-0. Epub 2017 Sep 19.
5
Narrative review of gene modification: applications in three-dimensional (3D) bioprinting.
Ann Transl Med. 2021 Oct;9(19):1502. doi: 10.21037/atm-21-2854.
6
Recent Advances in the Design of Three-Dimensional and Bioprinted Scaffolds for Full-Thickness Wound Healing.
Tissue Eng Part B Rev. 2022 Feb;28(1):160-181. doi: 10.1089/ten.TEB.2020.0339. Epub 2021 Feb 22.
7
Biomaterials and 3D printing techniques used in the medical field.
J Med Eng Technol. 2021 May;45(4):290-302. doi: 10.1080/03091902.2021.1893845. Epub 2021 Apr 30.
8
Organ Bioprinting: Are We There Yet?
Adv Healthc Mater. 2018 Jan;7(1). doi: 10.1002/adhm.201701018. Epub 2017 Nov 29.
9
Skin tissue engineering using 3D bioprinting: An evolving research field.
J Plast Reconstr Aesthet Surg. 2018 May;71(5):615-623. doi: 10.1016/j.bjps.2017.12.006. Epub 2017 Dec 13.
10
[Research advances of three-dimension printing technology in vertebrae and intervertebral disc tissue engineering].
Zhejiang Da Xue Xue Bao Yi Xue Ban. 2016 Mar;45(2):141-6. doi: 10.3785/j.issn.1008-9292.2016.03.06.

本文引用的文献

2
3D bioprinting for reconstructive surgery: Principles, applications and challenges.
J Plast Reconstr Aesthet Surg. 2017 Sep;70(9):1155-1170. doi: 10.1016/j.bjps.2017.06.001. Epub 2017 Jun 9.
3
Skin regeneration in three dimensions, current status, challenges and opportunities.
Differentiation. 2017 Jul-Aug;96:26-29. doi: 10.1016/j.diff.2017.06.002. Epub 2017 Jun 15.
4
3D bioprinting of structural proteins.
Biomaterials. 2017 Jul;134:180-201. doi: 10.1016/j.biomaterials.2017.04.019. Epub 2017 Apr 12.
5
Patient-specific 3D scanned and 3D printed antimicrobial polycaprolactone wound dressings.
Int J Pharm. 2017 Jul 15;527(1-2):161-170. doi: 10.1016/j.ijpharm.2017.04.077. Epub 2017 Apr 29.
6
A comparative study of bio-inspired protective scales using 3D printing and mechanical testing.
Acta Biomater. 2017 Jun;55:360-372. doi: 10.1016/j.actbio.2017.03.025. Epub 2017 Mar 16.
7
A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings.
J Adv Res. 2017 May;8(3):217-233. doi: 10.1016/j.jare.2017.01.005. Epub 2017 Feb 3.
8
Silk based bioinks for soft tissue reconstruction using 3-dimensional (3D) printing with in vitro and in vivo assessments.
Biomaterials. 2017 Feb;117:105-115. doi: 10.1016/j.biomaterials.2016.11.046. Epub 2016 Nov 27.
9
10
Low-temperature deposition manufacturing: A novel and promising rapid prototyping technology for the fabrication of tissue-engineered scaffold.
Mater Sci Eng C Mater Biol Appl. 2017 Jan 1;70(Pt 2):976-982. doi: 10.1016/j.msec.2016.04.014. Epub 2016 Apr 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验