INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany.
INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany; Chemistry Department, Saarland University, 66123 Saarbrücken, Germany.
Biomaterials. 2017 Jul;134:180-201. doi: 10.1016/j.biomaterials.2017.04.019. Epub 2017 Apr 12.
3D bioprinting is a booming method to obtain scaffolds of different materials with predesigned and customized morphologies and geometries. In this review we focus on the experimental strategies and recent achievements in the bioprinting of major structural proteins (collagen, silk, fibrin), as a particularly interesting technology to reconstruct the biochemical and biophysical composition and hierarchical morphology of natural scaffolds. The flexibility in molecular design offered by structural proteins, combined with the flexibility in mixing, deposition, and mechanical processing inherent to bioprinting technologies, enables the fabrication of highly functional scaffolds and tissue mimics with a degree of complexity and organization which has only just started to be explored. Here we describe the printing parameters and physical (mechanical) properties of bioinks based on structural proteins, including the biological function of the printed scaffolds. We describe applied printing techniques and cross-linking methods, highlighting the modifications implemented to improve scaffold properties. The used cell types, cell viability, and possible construct applications are also reported. We envision that the application of printing technologies to structural proteins will enable unprecedented control over their supramolecular organization, conferring printed scaffolds biological properties and functions close to natural systems.
3D 生物打印是一种新兴方法,可以获得具有预定和定制形态和几何形状的不同材料的支架。在这篇综述中,我们重点介绍了主要结构蛋白(胶原、丝蛋白、纤维蛋白)的生物打印的实验策略和最新进展,这是一种特别有趣的技术,可以重建天然支架的生化和生物物理组成以及层次形态。结构蛋白提供的分子设计灵活性,结合生物打印技术固有的混合、沉积和机械加工灵活性,使能够制造具有高度功能性和组织模拟的支架,其复杂程度和组织仅刚刚开始探索。在这里,我们描述了基于结构蛋白的生物墨水的打印参数和物理(机械)特性,包括打印支架的生物学功能。我们描述了应用的打印技术和交联方法,强调了为改善支架性能而实施的修改。还报告了使用的细胞类型、细胞活力和可能的构建应用。我们设想,将打印技术应用于结构蛋白将能够对其超分子组织进行前所未有的控制,赋予打印支架接近天然系统的生物特性和功能。