Suppr超能文献

通往罗马之路:多盒结构域在蓝细菌素 RiPP 生物合成中的作用。

Roads to Rome: Role of Multiple Cassettes in Cyanobactin RiPP Biosynthesis.

机构信息

Department of Medicinal Chemistry , University of Utah , Salt Lake City , Utah 84112 , United States.

出版信息

J Am Chem Soc. 2018 Nov 28;140(47):16213-16221. doi: 10.1021/jacs.8b09328. Epub 2018 Nov 14.

Abstract

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are ubiquitous natural products. Bioactive RiPPs are produced from a precursor peptide, which is modified by enzymes. Usually, a single product is encoded in a precursor peptide. However, in cyanobactins and several other RiPP pathways, a single precursor peptide encodes multiple bioactive products flanking with recognition sequences known as "cassettes". The role of multiple cassettes in one peptide is mysterious, but in general their presence is a marker of biosynthetic plasticity. Here, we show that in cyanobactin biosynthesis the presence of multiple cassettes confers distributive enzyme processing to multiple steps of the pathway, a feature we propose to be a hallmark of multicassette RiPPs. TruD heterocyclase is stochastic and distributive. Although a canonical biosynthetic route is favored with certain substrates, every conceivable biosynthetic route is accepted. Together, these factors afford greater plasticity to the biosynthetic pathway by equalizing the processing of each cassette, enabling access to chemical diversity.

摘要

核糖体合成和翻译后修饰肽(RiPPs)是普遍存在的天然产物。生物活性 RiPPs 是由前体肽产生的,前体肽通过酶进行修饰。通常,单个产物编码在前体肽中。然而,在蓝细菌素和其他几种 RiPP 途径中,单个前体肽编码多个生物活性产物,其侧翼带有称为“盒”的识别序列。一个肽中多个盒的作用是神秘的,但总的来说,它们的存在是生物合成可塑性的标志。在这里,我们表明,在蓝细菌素生物合成中,多个盒的存在赋予了途径中多个步骤的分布酶处理,我们提出这是多盒 RiPP 的标志特征。TruD 杂环酶是随机和分布的。尽管具有某些底物的典型生物合成途径是有利的,但每个可以想象的生物合成途径都被接受。这些因素通过使每个盒的处理均等化,为生物合成途径提供了更大的灵活性,从而能够获得化学多样性。

相似文献

1
Roads to Rome: Role of Multiple Cassettes in Cyanobactin RiPP Biosynthesis.
J Am Chem Soc. 2018 Nov 28;140(47):16213-16221. doi: 10.1021/jacs.8b09328. Epub 2018 Nov 14.
2
Three Principles of Diversity-Generating Biosynthesis.
Acc Chem Res. 2017 Oct 17;50(10):2569-2576. doi: 10.1021/acs.accounts.7b00330. Epub 2017 Sep 11.
3
Assessing the combinatorial potential of the RiPP cyanobactin tru pathway.
ACS Synth Biol. 2015 Apr 17;4(4):482-92. doi: 10.1021/sb500267d. Epub 2014 Sep 2.
4
Recognition sequences and substrate evolution in cyanobactin biosynthesis.
ACS Synth Biol. 2015 Feb 20;4(2):167-76. doi: 10.1021/sb500019b. Epub 2014 Mar 26.
5
The Biochemistry and Structural Biology of Cyanobactin Pathways: Enabling Combinatorial Biosynthesis.
Methods Enzymol. 2018;604:113-163. doi: 10.1016/bs.mie.2018.03.002. Epub 2018 May 4.
7
Directing Biosynthesis: Practical Supply of Natural and Unnatural Cyanobactins.
Methods Enzymol. 2016;575:1-20. doi: 10.1016/bs.mie.2016.02.012. Epub 2016 Mar 16.
8
The structure of the cyanobactin domain of unknown function from PatG in the patellamide gene cluster.
Acta Crystallogr F Struct Biol Commun. 2014 Dec 1;70(Pt 12):1597-603. doi: 10.1107/S2053230X1402425X. Epub 2014 Nov 14.
9
Marine molecular machines: heterocyclization in cyanobactin biosynthesis.
Chembiochem. 2010 Jul 5;11(10):1413-21. doi: 10.1002/cbic.201000196.

引用本文的文献

1
Pseudopterosin Biosynthesis: Unravelling a Decades Old Problem in Animal Specialized Metabolism.
J Am Chem Soc. 2025 Jan 29;147(4):3072-3079. doi: 10.1021/jacs.4c09925. Epub 2025 Jan 16.
2
AgeMTPT, a Catalyst for Peptide N-Terminal Modification.
ACS Synth Biol. 2022 Nov 18;11(11):3699-3705. doi: 10.1021/acssynbio.2c00312. Epub 2022 Oct 24.
3
Applying Promiscuous RiPP Enzymes to Peptide Backbone -Methylation Chemistry.
ACS Chem Biol. 2022 Aug 19;17(8):2165-2178. doi: 10.1021/acschembio.2c00293. Epub 2022 Jul 12.
4
Control of Nucleophile Chemoselectivity in Cyanobactin YcaO Heterocyclases PatD and TruD.
ACS Chem Biol. 2022 May 20;17(5):1215-1225. doi: 10.1021/acschembio.2c00147. Epub 2022 Apr 14.
5
Biology and applications of co-produced, synergistic antimicrobials from environmental bacteria.
Nat Microbiol. 2021 Sep;6(9):1118-1128. doi: 10.1038/s41564-021-00952-6. Epub 2021 Aug 26.
7
New developments in RiPP discovery, enzymology and engineering.
Nat Prod Rep. 2021 Jan 1;38(1):130-239. doi: 10.1039/d0np00027b. Epub 2020 Sep 16.
8
Victorin, the host-selective cyclic peptide toxin from the oat pathogen , is ribosomally encoded.
Proc Natl Acad Sci U S A. 2020 Sep 29;117(39):24243-24250. doi: 10.1073/pnas.2010573117. Epub 2020 Sep 14.
9
Recent advances in the biosynthesis of RiPPs from multicore-containing precursor peptides.
J Ind Microbiol Biotechnol. 2020 Oct;47(9-10):659-674. doi: 10.1007/s10295-020-02289-1. Epub 2020 Jul 2.
10
Translation-Targeting RiPPs and Where to Find Them.
Front Genet. 2020 Mar 31;11:226. doi: 10.3389/fgene.2020.00226. eCollection 2020.

本文引用的文献

2
Bypassing the proline/thiazoline requirement of the macrocyclase PatG.
Chem Commun (Camb). 2017 Nov 14;53(91):12274-12277. doi: 10.1039/c7cc06550g.
4
Three Principles of Diversity-Generating Biosynthesis.
Acc Chem Res. 2017 Oct 17;50(10):2569-2576. doi: 10.1021/acs.accounts.7b00330. Epub 2017 Sep 11.
5
YcaO-Dependent Posttranslational Amide Activation: Biosynthesis, Structure, and Function.
Chem Rev. 2017 Apr 26;117(8):5389-5456. doi: 10.1021/acs.chemrev.6b00623. Epub 2017 Mar 3.
6
Synthesis of Hybrid Cyclopeptides through Enzymatic Macrocyclization.
ChemistryOpen. 2016 Dec 13;6(1):11-14. doi: 10.1002/open.201600134. eCollection 2017 Feb.
7
Unveiling the Biosynthetic Pathway of the Ribosomally Synthesized and Post-translationally Modified Peptide Ustiloxin B in Filamentous Fungi.
Angew Chem Int Ed Engl. 2016 Jul 4;55(28):8072-5. doi: 10.1002/anie.201602611. Epub 2016 May 11.
8
Enzymatic Macrocyclization of 1,2,3-Triazole Peptide Mimetics.
Angew Chem Int Ed Engl. 2016 May 4;55(19):5842-5. doi: 10.1002/anie.201601564. Epub 2016 Apr 5.
9
Biosynthetic investigation of phomopsins reveals a widespread pathway for ribosomal natural products in Ascomycetes.
Proc Natl Acad Sci U S A. 2016 Mar 29;113(13):3521-6. doi: 10.1073/pnas.1522907113. Epub 2016 Mar 15.
10
Metabolic model for diversity-generating biosynthesis.
Proc Natl Acad Sci U S A. 2016 Feb 16;113(7):1772-7. doi: 10.1073/pnas.1525438113. Epub 2016 Feb 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验