Department of Demography, University of California, Berkeley, 2232 Piedmont Avenue, MC #2120, Berkeley, CA, 94720-2120, USA.
Demography. 2018 Dec;55(6):2025-2044. doi: 10.1007/s13524-018-0728-x.
Widespread population aging has made it critical to understand death rates at old ages. However, studying mortality at old ages is challenging because the data are sparse: numbers of survivors and deaths get smaller and smaller with age. I show how to address this challenge by using principled model selection techniques to empirically evaluate theoretical mortality models. I test nine models of old-age death rates by fitting them to 360 high-quality data sets on cohort mortality after age 80. Models that allow for the possibility of decelerating death rates tend to fit better than models that assume exponentially increasing death rates. No single model is capable of universally explaining observed old-age mortality patterns, but the log-quadratic model most consistently predicts well. Patterns of model fit differ by country and sex. I discuss possible mechanisms, including sample size, period effects, and regional or cultural factors that may be important keys to understanding patterns of old-age mortality. I introduce mortfit, a freely available R package that enables researchers to extend the analysis to other models, age ranges, and data sources.
人口老龄化的广泛出现使得了解老年人的死亡率变得至关重要。然而,研究老年人的死亡率具有挑战性,因为数据稀疏:随着年龄的增长,幸存者和死亡人数越来越少。我展示了如何通过使用有原则的模型选择技术来解决这一挑战,该技术可用于实证评估理论死亡率模型。我通过将 360 个高质量的 80 岁以上队列死亡率数据集拟合到 9 个老年死亡率模型中,对这些模型进行了测试。允许死亡率减速的模型往往比假设死亡率呈指数增长的模型更能拟合。没有一个单一的模型能够普遍解释观察到的老年人死亡率模式,但对数二次模型最能始终如一地做出良好预测。模型拟合模式因国家和性别而异。我讨论了可能的机制,包括样本量、时期效应以及区域或文化因素,这些因素可能是理解老年人死亡率模式的重要关键。我介绍了 mortfit,这是一个免费提供的 R 包,使研究人员能够将分析扩展到其他模型、年龄范围和数据源。