Pearce Michael, Raftery Adrian
Departments of Statistics, University of Washington, USA.
Departments of Statistics and Sociology, University of Washington, USA.
Demogr Res. 2021 Jan-Jun;44:1271-1294. doi: 10.4054/demres.2021.44.52. Epub 2021 Jun 30.
We consider the problem of quantifying the human lifespan using a statistical approach that probabilistically forecasts the maximum reported age at death (MRAD) through 2100.
We seek to quantify the probability that any person attains various extreme ages, such as those above 120, by the year 2100.
We use the exponential survival model for supercentenarians (people over age 110) of Rootzén and Zholud (2017) but extend the forecasting window, quantify population uncertainty using Bayesian population projections, and incorporate the most recent data from the International Database on Longevity (IDL) to obtain unconditional estimates of the distribution of MRAD this century in a fully Bayesian analysis.
We find that the exponential survival model for supercentenarians is consistent with the most recent IDL data and that projections of the population aged 110-114 through 2080 are sensible. We integrate over the posterior distributions of the exponential model parameter and uncertainty in the supercentenarian population projections to estimate an unconditional distribution of MRAD by 2100.
Based on the Bayesian analysis, there is a greater than 99% probability that the current MRAD of 122 will be broken by 2100. We estimate the probabilities that a person lives to at least age 126,128, or 130 this century, as 89%, 44%, and 13%, respectively.
We have updated the supercentenarian survival model of Rootzén and Zholud using the most recent IDL data, incorporated Bayesian population projections, and extended the forecasting window to create the first fully Bayesian and unconditional probabilistic projection of MRAD by 2100.
我们考虑使用一种统计方法来量化人类寿命,该方法通过概率预测到2100年的最高报告死亡年龄(MRAD)。
我们试图量化到2100年时任何人达到各种极端年龄(如120岁以上)的概率。
我们使用了Rootzén和Zholud(2017年)提出的针对超级百岁老人(年龄超过110岁的人)的指数生存模型,但扩展了预测窗口,使用贝叶斯人口预测来量化人口不确定性,并纳入了国际长寿数据库(IDL)的最新数据,以便在全面的贝叶斯分析中获得本世纪MRAD分布的无条件估计。
我们发现超级百岁老人的指数生存模型与IDL的最新数据一致,并且到2080年110 - 114岁人口的预测是合理的。我们对指数模型参数的后验分布和超级百岁老人人口预测中的不确定性进行积分,以估计到2100年MRAD的无条件分布。
基于贝叶斯分析,到2100年当前122岁的MRAD被打破的概率大于99%。我们估计一个人在本世纪活到至少126岁、128岁或130岁的概率分别为89%、44%和13%。
我们使用IDL的最新数据更新了Rootzén和Zholud的超级百岁老人生存模型,纳入了贝叶斯人口预测,并扩展了预测窗口,以创建到2100年MRAD的首个全面贝叶斯和无条件概率预测。