Suppr超能文献

基于术前电子健康记录数据,使用机器学习模型预测谵妄

Delirium Prediction using Machine Learning Models on Preoperative Electronic Health Records Data.

作者信息

Davoudi Anis, Ebadi Ashkan, Rashidi Parisa, Ozrazgat-Baslanti Tazcan, Bihorac Azra, Bursian Alberto C

机构信息

Department of Biomedical Engineering, University of Florida, Gainesville, USA.

Department of Medicine, University of Florida, Gainesville, USA.

出版信息

Proc IEEE Int Symp Bioinformatics Bioeng. 2017 Oct;2017:568-573. doi: 10.1109/BIBE.2017.00014. Epub 2018 Jan 11.

Abstract

Electronic Health Records (EHR) are mainly designed to record relevant patient information during their stay in the hospital for administrative purposes. They additionally provide an efficient and inexpensive source of data for medical research, such as patient outcome prediction. In this study, we used preoperative Electronic Health Records to predict postoperative delirium. We compared the performance of seven machine learning models on delirium prediction: linear models, generalized additive models, random forests, support vector machine, neural networks, and extreme gradient boosting. Among the models evaluated in this study, random forests and generalized additive model outperformed the other models in terms of the overall performance metrics for prediction of delirium, particularly with respect to sensitivity. We found that age, alcohol or drug abuse, socioeconomic status, underlying medical issue, severity of medical problem, and attending surgeon can affect the risk of delirium.

摘要

电子健康记录(EHR)主要用于记录患者住院期间的相关信息,以用于管理目的。此外,它们还为医学研究提供了高效且低成本的数据来源,例如患者预后预测。在本研究中,我们使用术前电子健康记录来预测术后谵妄。我们比较了七种机器学习模型在谵妄预测方面的性能:线性模型、广义相加模型、随机森林、支持向量机、神经网络和极端梯度提升。在本研究评估的模型中,随机森林和广义相加模型在谵妄预测的整体性能指标方面优于其他模型,尤其是在敏感性方面。我们发现年龄、酗酒或药物滥用、社会经济地位、基础医疗问题、医疗问题的严重程度以及主刀医生会影响谵妄风险。

相似文献

1
Delirium Prediction using Machine Learning Models on Preoperative Electronic Health Records Data.
Proc IEEE Int Symp Bioinformatics Bioeng. 2017 Oct;2017:568-573. doi: 10.1109/BIBE.2017.00014. Epub 2018 Jan 11.
5
New onset delirium prediction using machine learning and long short-term memory (LSTM) in electronic health record.
J Am Med Inform Assoc. 2022 Dec 13;30(1):120-131. doi: 10.1093/jamia/ocac210.
6
Predicting post-stroke pneumonia using deep neural network approaches.
Int J Med Inform. 2019 Dec;132:103986. doi: 10.1016/j.ijmedinf.2019.103986. Epub 2019 Oct 1.
8
Prediction of Incident Delirium Using a Random Forest classifier.
J Med Syst. 2018 Nov 14;42(12):261. doi: 10.1007/s10916-018-1109-0.
9
Prediction of early childhood obesity with machine learning and electronic health record data.
Int J Med Inform. 2021 Jun;150:104454. doi: 10.1016/j.ijmedinf.2021.104454. Epub 2021 Apr 9.
10
Prediction model development of late-onset preeclampsia using machine learning-based methods.
PLoS One. 2019 Aug 23;14(8):e0221202. doi: 10.1371/journal.pone.0221202. eCollection 2019.

引用本文的文献

1
DeLLiriuM: A large language model for delirium prediction in the ICU using structured EHR.
Res Sq. 2025 Aug 13:rs.3.rs-7216692. doi: 10.21203/rs.3.rs-7216692/v1.
3
Determining the ground truth for the prediction of delirium in adult patients in acute care: a scoping review.
JAMIA Open. 2025 May 26;8(3):ooaf037. doi: 10.1093/jamiaopen/ooaf037. eCollection 2025 Jun.
4
Machine Learning Multimodal Model for Delirium Risk Stratification.
JAMA Netw Open. 2025 May 1;8(5):e258874. doi: 10.1001/jamanetworkopen.2025.8874.
5
Development of a Disease Model for Predicting Postoperative Delirium Using Combined Blood Biomarkers.
Ann Clin Transl Neurol. 2025 May;12(5):976-985. doi: 10.1002/acn3.70029. Epub 2025 Mar 17.
9
Characterizing medical patients with delirium: A cohort study comparing ICD-10 codes and a validated chart review method.
PLoS One. 2024 May 13;19(5):e0302888. doi: 10.1371/journal.pone.0302888. eCollection 2024.

本文引用的文献

4
Application of Machine Learning Techniques to High-Dimensional Clinical Data to Forecast Postoperative Complications.
PLoS One. 2016 May 27;11(5):e0155705. doi: 10.1371/journal.pone.0155705. eCollection 2016.
5
Validation of the delirium observation screening scale in a hospitalized older population.
J Hosp Med. 2016 Jul;11(7):494-7. doi: 10.1002/jhm.2580. Epub 2016 Mar 11.
6
Pre- and Intraoperative Predictors of Delirium after Open Abdominal Aortic Aneurysm Repair.
Ann Vasc Dis. 2015;8(3):215-9. doi: 10.3400/avd.oa.15-00054. Epub 2015 Jul 24.
7
Neighborhood socioeconomic conditions and depression: a systematic review and meta-analysis.
Soc Psychiatry Psychiatr Epidemiol. 2015 Nov;50(11):1641-56. doi: 10.1007/s00127-015-1092-4. Epub 2015 Jul 12.
8
Intersection of Race/Ethnicity and Socioeconomic Status in Mortality After Breast Cancer.
J Community Health. 2015 Dec;40(6):1287-99. doi: 10.1007/s10900-015-0052-y.
9
The impact of anesthesiologists on coronary artery bypass graft surgery outcomes.
Anesth Analg. 2015 Mar;120(3):526-533. doi: 10.1213/ANE.0000000000000522.
10
Comparing logistic regression, support vector machines, and permanental classification methods in predicting hypertension.
BMC Proc. 2014 Jun 17;8(Suppl 1):S96. doi: 10.1186/1753-6561-8-S1-S96. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验