Heikal Mariam, Saad Halim, Ghanime Pia Maria, Bou Dargham Tarek, Bizri Maya, Kobeissy Firas, El Hajj Wassim, Talih Farid
Department of Computer Science, American University of Beirut, Beirut, Lebanon.
Department of Psychiatry, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
Neuropsychiatr Dis Treat. 2024 Oct 2;20:1861-1876. doi: 10.2147/NDT.S479756. eCollection 2024.
Delirium is a common and acute neuropsychiatric syndrome that requires timely intervention to prevent its associated morbidity and mortality. Yet, its diagnosis and symptoms are often overlooked due to its variable clinical presentation and fluctuating nature. Thus, in this study, we address the barriers to delirium diagnosis by utilizing a machine learning-based predictive algorithm for incident delirium that relies on archived electronic health records (EHRs) data.
We used the Medical Information Mart for Intensive Care (MIMIC) database to create a detailed dataset for identifying delirium in intensive care unit (ICU) patients. Our approach involved training machine learning models on this dataset to pinpoint critical clinical features for delirium detection. These features were then refined and applied to non-ICU patients using EHRs from the American University of Beirut Medical Center (AUBMC).
Our study assessed machine learning models like Extreme Gradient Boosting (XGBoost), Categorical Boosting (CatBoost), Classification and Regression Trees (CART), Random Forest (RF), Neural Oblivious Decision Ensembles (NODE), and Logistic Regression (LR), highlighting superior delirium detection in diverse clinical settings. The CatBoost model excelled in ICU environments with an F1 Score of 89.2%, while XGBoost performed best in general hospital settings with a 75.4% F1 Score. Interpretations using Tabular Local Interpretable Model-agnostic Explanations (LIME) revealed critical indicators such as prothrombin time and hematocrit levels, enhancing model transparency and clinical applicability. These clinical insights help differentiate the delirium predictors between ICU patients, who are often sensitive to various factors.
The proposed predictive algorithm improves delirium detection rates and streamlines efficiency in hospital electronic systems, thereby enabling prompt interventions to prevent delirium progression and associated complications. The clinical indicators for delirium that we identified in general hospital settings and ICU can greatly help healthcare professionals identify potential causes of delirium and reduce misdiagnosis.
谵妄是一种常见的急性神经精神综合征,需要及时干预以预防其相关的发病率和死亡率。然而,由于其临床表现多变且具有波动性,其诊断和症状常常被忽视。因此,在本研究中,我们通过利用基于机器学习的预测算法来解决谵妄诊断的障碍,该算法用于预测新发谵妄,依赖于存档的电子健康记录(EHR)数据。
我们使用重症监护医学信息集市(MIMIC)数据库创建了一个详细的数据集,用于识别重症监护病房(ICU)患者的谵妄。我们的方法包括在此数据集上训练机器学习模型,以确定谵妄检测的关键临床特征。然后对这些特征进行优化,并使用贝鲁特美国大学医学中心(AUBMC)的电子健康记录应用于非ICU患者。
我们的研究评估了诸如极端梯度提升(XGBoost)、分类提升(CatBoost)、分类与回归树(CART)、随机森林(RF)、神经随机决策集成(NODE)和逻辑回归(LR)等机器学习模型,突出了其在不同临床环境中对谵妄的卓越检测能力。CatBoost模型在ICU环境中表现出色,F1分数为89.2%,而XGBoost在综合医院环境中表现最佳,F1分数为75.4%。使用表格局部可解释模型无关解释(LIME)进行的解释揭示了诸如凝血酶原时间和血细胞比容水平等关键指标,提高了模型的透明度和临床适用性。这些临床见解有助于区分ICU患者中谵妄的预测因素,ICU患者通常对各种因素较为敏感。
所提出的预测算法提高了谵妄的检测率,并简化了医院电子系统的效率,从而能够及时进行干预,以防止谵妄进展及相关并发症。我们在综合医院环境和ICU中确定的谵妄临床指标可以极大地帮助医护人员识别谵妄的潜在原因并减少误诊。