Suppr超能文献

从广泛的临床、心理和生物学数据预测抑郁症的自然病程:一种机器学习方法。

Predicting the naturalistic course of depression from a wide range of clinical, psychological, and biological data: a machine learning approach.

机构信息

Department of Psychiatry and Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands.

Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.

出版信息

Transl Psychiatry. 2018 Nov 5;8(1):241. doi: 10.1038/s41398-018-0289-1.

Abstract

Many variables have been linked to different course trajectories of depression. These findings, however, are based on group comparisons with unknown translational value. This study evaluated the prognostic value of a wide range of clinical, psychological, and biological characteristics for predicting the course of depression and aimed to identify the best set of predictors. Eight hundred four unipolar depressed patients (major depressive disorder or dysthymia) patients were assessed on a set involving 81 demographic, clinical, psychological, and biological measures and were clinically followed-up for 2 years. Subjects were grouped according to (i) the presence of a depression diagnosis at 2-year follow-up (yes n = 397, no n = 407), and (ii) three disease course trajectory groups (rapid remission, n = 356, gradual improvement n = 273, and chronic n = 175) identified by a latent class growth analysis. A penalized logistic regression, followed by tight control over type I error, was used to predict depression course and to evaluate the prognostic value of individual variables. Based on the inventory of depressive symptomatology (IDS), we could predict a rapid remission course of depression with an AUROC of 0.69 and 62% accuracy, and the presence of an MDD diagnosis at follow-up with an AUROC of 0.66 and 66% accuracy. Other clinical, psychological, or biological variables did not significantly improve the prediction. Among the large set of variables considered, only the IDS provided predictive value for course prediction on an individual level, although this analysis represents only one possible methodological approach. However, accuracy of course prediction was moderate at best and further improvement is required for these findings to be clinically useful.

摘要

许多变量与抑郁症的不同病程轨迹有关。然而,这些发现是基于具有未知转化价值的组间比较得出的。本研究评估了广泛的临床、心理和生物学特征对预测抑郁症病程的预后价值,并旨在确定最佳的预测因子集。804 名单相抑郁患者(重性抑郁障碍或心境恶劣障碍)接受了包括 81 项人口统计学、临床、心理和生物学测量的评估,并进行了为期 2 年的临床随访。根据(i)在 2 年随访时是否存在抑郁诊断(是 n=397,否 n=407),以及(ii)通过潜在类别增长分析确定的三种疾病病程轨迹组(快速缓解,n=356,逐渐改善 n=273,慢性 n=175)对受试者进行分组。采用惩罚逻辑回归,随后对 I 型错误进行严格控制,用于预测抑郁病程,并评估个体变量的预后价值。基于抑郁症状清单(IDS),我们可以预测快速缓解的抑郁病程,AUROC 为 0.69,准确率为 62%,并预测随访时存在 MDD 诊断,AUROC 为 0.66,准确率为 66%。其他临床、心理或生物学变量并没有显著提高预测效果。在考虑的大量变量中,只有 IDS 对个体水平的病程预测具有预测价值,尽管这种分析仅代表一种可能的方法学方法。然而,病程预测的准确性充其量只是中等水平,需要进一步改进,这些发现才能具有临床意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3c2/6218451/b198a0768c8b/41398_2018_289_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验