Suppr超能文献

高盐环境中的独特离子整流:一种高性能且可持续的发电系统。

Unique ion rectification in hypersaline environment: A high-performance and sustainable power generator system.

作者信息

Zhu Xuanbo, Hao Junran, Bao Bin, Zhou Yahong, Zhang Haibo, Pang Jinhui, Jiang Zhenhua, Jiang Lei

机构信息

National and Local Joint Engineering Laboratory for Synthetic Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, P. R. China.

Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, P. R. China.

出版信息

Sci Adv. 2018 Oct 26;4(10):eaau1665. doi: 10.1126/sciadv.aau1665. eCollection 2018 Oct.

Abstract

The development of membrane science plays a fundamental role in harvesting osmotic power, which is considered a future clean and renewable energy source. However, the existing designs of the membrane cannot handle the low conversion efficiency and power density. Theory has predicted that the Janus membrane with ionic diode-type current would be the most efficient material. Therefore, rectified ionic transportation in a hypersaline environment (the salt concentration is at least 0.5 M in sea) is highly desired, but it still remains a challenge. Here, we demonstrate a versatile strategy for creating a scale-up Janus three-dimensional (3D) porous membrane-based osmotic power generator system. Janus membranes with tunable surface charge density and porosity were obtained by compounding two kinds of ionomers. Under electric fields or chemical gradients, the Janus membrane has ionic current rectification properties and anion selectivities in a hypersaline environment. Experiments and theoretical calculation demonstrate that abundant surface charge and narrow pore size distribution benefit this unique ionic transport behavior in high salt solution. Thus, the output power density of this membrane-based generator reaches 2.66 W/m (mixing seawater and river water) and up to 5.10 W/m at a 500-fold salinity gradient (i.e., flowing salt lake into river water). Furthermore, a generator, built by connecting a series of membranes, could power a calculator for 120 hours without obvious current decline, proving the excellent physical and chemical stabilities. Therefore, we believe that this work advances the fundamental understanding of fluid transport and materials design as a paradigm for a high-performance energy conversion generator.

摘要

膜科学的发展在获取渗透能方面发挥着基础性作用,渗透能被视为一种未来的清洁可再生能源。然而,现有的膜设计无法解决低转换效率和功率密度的问题。理论预测,具有离子二极管型电流的Janus膜将是最有效的材料。因此,在高盐环境(海水中盐浓度至少为0.5M)中实现整流离子传输是非常有必要的,但这仍然是一个挑战。在此,我们展示了一种通用策略,用于创建基于Janus三维(3D)多孔膜的放大渗透能发电系统。通过复合两种离聚物获得了具有可调表面电荷密度和孔隙率的Janus膜。在电场或化学梯度作用下,Janus膜在高盐环境中具有离子电流整流特性和阴离子选择性。实验和理论计算表明,丰富的表面电荷和狭窄的孔径分布有利于这种在高盐溶液中独特的离子传输行为。因此,这种基于膜的发电机的输出功率密度在混合海水和河水时达到2.66W/m²,在500倍盐度梯度(即盐湖水流向河水)下高达5.10W/m²。此外,通过连接一系列膜构建的发电机可以为计算器供电120小时,且电流无明显下降,证明了其优异的物理和化学稳定性。因此,我们相信这项工作推进了对流体传输和材料设计的基本理解,为高性能能量转换发电机树立了典范。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c269/6203222/fd47e2f953bf/aau1665-F1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验