Northeastern University, 334 Snell Engineering Center, Boston, MA, 02115, USA.
Health Care Manag Sci. 2020 Mar;23(1):20-33. doi: 10.1007/s10729-018-9461-7. Epub 2018 Nov 6.
Failing to match the supply of resources to the demand for resources in a hospital can cause non-clinical transfers, diversions, safety risks, and expensive under-utilized resource capacity. Forecasting bed demand helps achieve appropriate safety standards and cost management by proactively adjusting staffing levels and patient flow protocols. This paper defines the theoretical bounds on optimal bed demand prediction accuracy and develops a flexible statistical model to approximate the probability mass function of future bed demand. A case study validates the model using blinded data from a mid-sized Massachusetts community hospital. This approach expands upon similar work by forecasting multiple days in advance instead of a single day, providing a probability mass function of demand instead of a point estimate, using the exact surgery schedule instead of assuming a cyclic schedule, and using patient-level duration-varying length-of-stay distributions instead of assuming patient homogeneity and exponential length of stay distributions. The primary results of this work are an accurate and lengthy forecast, which provides managers better information and more time to optimize short-term staffing adaptations to stochastic bed demand, and a derivation of the minimum mean absolute error of an ideal forecast.
未能使医院的资源供应与资源需求相匹配,可能导致非临床转移、转移、安全风险和昂贵的未充分利用的资源能力。预测床位需求有助于通过主动调整人员配置水平和患者流动协议来实现适当的安全标准和成本管理。本文定义了最佳床位需求预测精度的理论界限,并开发了一个灵活的统计模型来近似未来床位需求的概率质量函数。一项案例研究使用来自马萨诸塞州一家中型社区医院的盲数据验证了该模型。该方法通过提前预测多天而不是一天、提供需求的概率质量函数而不是点估计、使用精确的手术计划而不是假设循环计划以及使用患者水平的随时间变化的住院时间分布而不是假设患者同质性和指数住院时间分布,扩展了类似的工作。这项工作的主要结果是一个准确且长时间的预测,它为管理人员提供了更好的信息和更多的时间来优化短期人员配置以适应随机床位需求,并推导出理想预测的最小平均绝对误差。