Suppr超能文献

荷兰新冠肺炎住院人数及床位占用情况建模

Modeling COVID-19 hospital admissions and occupancy in the Netherlands.

作者信息

Bekker René, Uit Het Broek Michiel, Koole Ger

机构信息

LCPS - Landelijk Coördinatiecentrum Patiënten Spreiding, the Netherlands.

Department of Mathematics, Vrije Universiteit Amsterdam, the Netherlands.

出版信息

Eur J Oper Res. 2023 Jan 1;304(1):207-218. doi: 10.1016/j.ejor.2021.12.044. Epub 2022 Jan 5.

Abstract

We describe the models we built for predicting hospital admissions and bed occupancy of COVID-19 patients in the Netherlands. These models were used to make short-term decisions about transfers of patients between regions and for long-term policy making. For forecasting admissions we developed a new technique using linear programming. To predict occupancy we fitted residual lengths of stay and used results from queueing theory. Our models increased the accuracy of and trust in the predictions and helped manage the pandemic, minimizing the impact in terms of beds and maximizing remaining capacity for other types of care.

摘要

我们描述了我们为预测荷兰新冠肺炎患者的住院情况和床位占用情况而构建的模型。这些模型被用于做出关于患者在不同地区之间转移的短期决策以及长期政策制定。为了预测住院人数,我们开发了一种使用线性规划的新技术。为了预测床位占用情况,我们拟合了剩余住院时长,并运用了排队论的结果。我们的模型提高了预测的准确性和可信度,并有助于管理疫情,将床位方面的影响降至最低,同时最大限度地提高其他类型护理的剩余能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6fc/8730382/f5a7e2d15980/gr1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验