Faculty of Education, University of Cambridge, Cambridge, UK.
Int J Methods Psychiatr Res. 2019 Mar;28(1):e1753. doi: 10.1002/mpr.1753. Epub 2018 Nov 6.
To facilitate future outcome studies, we aimed to develop a robust and replicable method for estimating a categorical and dimensional measure of Diagnostic and Statistical Manual of Mental Disorders-5 (DSM-5) attention deficit hyperactivity disorder (ADHD) in the 1970 British Cohort Study (BCS70).
Following a data mining framework, we mapped DSM-5 ADHD symptoms to age 10 BCS70 data (N = 11,426) and derived a 16-item scale (α = 0.85). Mapping was validated by an expert panel. A categorical subgroup was derived (n = 594, 5.2%), and a zero-inflated item response theory (IRT) mixture model fitted to estimate a dimensional measure.
Subgroup composition was comparable with other ADHD samples. Relative risk ratios (ADHD/not ADHD) included boys = 1.38, unemployed fathers = 2.07, below average reading = 2.58, and depressed parent = 3.73. Our estimated measures correlated with two derived reference scales: Strengths and Difficulties Questionnaire hyperactivity (r = 0.74) and a Rutter/Conners-based scale (r = 0.81), supporting construct validity. IRT model items (symptoms) had moderate to high discrimination (0.90-2.81) and provided maximum information at average to moderate theta levels of ADHD (0.5-1.75).
We extended previous work to identify ADHD in BCS70, derived scales from existing data, modeled ADHD items with IRT, and adjusted for a zero-inflated distribution. Psychometric properties were promising, and this work will enable future studies of causal mechanisms in ADHD.
为了便于未来的结果研究,我们旨在开发一种稳健且可重复的方法,用于估计 1970 年英国队列研究(BCS70)中《精神障碍诊断与统计手册-5 版》(DSM-5)注意缺陷多动障碍(ADHD)的分类和维度测量。
根据数据挖掘框架,我们将 DSM-5 ADHD 症状映射到 BCS70 数据(N=11426)的 10 岁年龄,并得出了一个 16 项量表(α=0.85)。映射通过专家小组进行了验证。衍生出一个分类亚组(n=594,5.2%),并拟合零膨胀项目反应理论(IRT)混合模型来估计维度测量。
亚组组成与其他 ADHD 样本相当。相对风险比(ADHD/非 ADHD)包括男孩=1.38,失业父亲=2.07,阅读低于平均水平=2.58,抑郁父母=3.73。我们的估计指标与两个衍生的参考量表相关:《长处与困难问卷》多动(r=0.74)和基于 Rutter/Conners 的量表(r=0.81),支持结构有效性。IRT 模型项目(症状)具有中等至高的区分度(0.90-2.81),并在 ADHD 的平均到中度 theta 水平(0.5-1.75)提供了最大信息量。
我们扩展了之前的工作,在 BCS70 中识别 ADHD,从现有数据中得出量表,使用 IRT 对 ADHD 项目进行建模,并对零膨胀分布进行调整。心理测量学特性很有希望,这项工作将使 ADHD 的因果机制的未来研究成为可能。