Suppr超能文献

用于制备治疗性纳米颗粒的微通道中流体的可控声学混合

Controllable Acoustic Mixing of Fluids in Microchannels for the Fabrication of Therapeutic Nanoparticles.

作者信息

Westerhausen Christoph, Schnitzler Lukas G, Wendel Dominik, Krzysztoń Rafał, Lächelt Ulrich, Wagner Ernst, Rädler Joachim O, Wixforth Achim

机构信息

Chair of Experimental Physics I, University of Augsburg, Universitätsstraße 1, 86519 Augsburg, Germany.

Nanosystems Initiative Munich, Schellingstraße 4, 80799 Munich, Germany.

出版信息

Micromachines (Basel). 2016 Sep 2;7(9):150. doi: 10.3390/mi7090150.

Abstract

Fifteen years ago, surface acoustic waves (SAW) were found to be able to drive fluids and numerous applications in microfluidics have been developed since. Here, we review the progress made and report on new approaches in setting-up microfluidic, continuous flow acoustic mixing. In a microchannel, chaotic advection is achieved by generation of a SAW driven fluid jet perpendicular to the mean flow direction. Using a high speed video camera and particle image velocimetry, we measure the flow velocities and show that mixing is achieved in a particularly controllable and fast way. The mixing quality is determined as a function of system parameters: SAW power, volume flux and fluid viscosity. Exploring the parameter space of mixing provides a practical guide for acoustic mixing in microchannels and allows for adopting conditions to different solvents, as e.g., required for the generation of nanoscale particles from alcoholic phases. We exemplarily demonstrate the potential of SAW based continuous flow mixing for the production of therapeutic nucleic acid nanoparticles assembled from polymer and lipid solutions.

摘要

十五年前,人们发现表面声波(SAW)能够驱动流体,自那时起便开发了众多微流体应用。在此,我们回顾已取得的进展,并报告设置微流体连续流声学混合的新方法。在微通道中,通过产生垂直于平均流动方向的SAW驱动流体射流来实现混沌平流。使用高速摄像机和粒子图像测速技术,我们测量了流速,并表明混合是以一种特别可控且快速的方式实现的。混合质量由系统参数决定:SAW功率、体积通量和流体粘度。探索混合的参数空间为微通道中的声学混合提供了实用指南,并允许针对不同溶剂采用相应条件,例如从醇相生成纳米级颗粒时所需的条件。我们示例性地展示了基于SAW的连续流混合在由聚合物和脂质溶液组装治疗性核酸纳米颗粒生产中的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c93b/6189812/a9f33d664bbb/micromachines-07-00150-g010.jpg

相似文献

2
Rapid acoustofluidic mixing by ultrasonic surface acoustic wave-induced acoustic streaming flow.
Ultrason Sonochem. 2023 Oct;99:106575. doi: 10.1016/j.ultsonch.2023.106575. Epub 2023 Sep 4.
3
3D measurement and simulation of surface acoustic wave driven fluid motion: a comparison.
Lab Chip. 2017 Jun 13;17(12):2104-2114. doi: 10.1039/c7lc00184c.
5
Ultrafast microfluidics using surface acoustic waves.
Biomicrofluidics. 2009 Jan 2;3(1):12002. doi: 10.1063/1.3056040.
6
The complexity of surface acoustic wave fields used for microfluidic applications.
Ultrasonics. 2020 Aug;106:106160. doi: 10.1016/j.ultras.2020.106160. Epub 2020 Apr 14.
7
Fabrication of Patterned Magnetic Particles in Microchannels and Their Application in Micromixers.
Biosensors (Basel). 2024 Aug 23;14(9):408. doi: 10.3390/bios14090408.
9
Surface acoustic wave microfluidics.
Lab Chip. 2013 Sep 21;13(18):3626-49. doi: 10.1039/c3lc50361e.
10
Bubble-Enhanced Mixing Induced by Standing Surface Acoustic Waves (SSAWs) in Microchannel.
Micromachines (Basel). 2022 Aug 18;13(8):1337. doi: 10.3390/mi13081337.

引用本文的文献

1
Enhanced Micromixing Using Surface Acoustic Wave Devices: Fundamentals, Designs, and Applications.
Micromachines (Basel). 2025 May 25;16(6):619. doi: 10.3390/mi16060619.
3
A Lotus shaped acoustofluidic mixer: High throughput homogenisation of liquids in 2 ms using hydrodynamically coupled resonators.
Ultrason Sonochem. 2022 Feb;83:105936. doi: 10.1016/j.ultsonch.2022.105936. Epub 2022 Jan 31.
5
A Review of Passive Micromixers with a Comparative Analysis.
Micromachines (Basel). 2020 Apr 27;11(5):455. doi: 10.3390/mi11050455.
6
Mixing Performance of a Cost-effective Split-and-Recombine 3D Micromixer Fabricated by Xurographic Method.
Micromachines (Basel). 2019 Nov 16;10(11):786. doi: 10.3390/mi10110786.
7
Comparison of Micro-Mixing in Time Pulsed Newtonian Fluid and Viscoelastic Fluid.
Micromachines (Basel). 2019 Apr 18;10(4):262. doi: 10.3390/mi10040262.
8
Surface acoustic wave devices for chemical sensing and microfluidics: A review and perspective.
Anal Methods. 2017;9(28):4112-4134. doi: 10.1039/C7AY00690J. Epub 2017 Jun 13.

本文引用的文献

1
Acoustotaxis -in vitro stimulation in a wound healing assay employing surface acoustic waves.
Biomater Sci. 2016 Jul 21;4(7):1092-9. doi: 10.1039/c6bm00125d. Epub 2016 May 3.
2
Nucleic Acid Therapeutics Using Polyplexes: A Journey of 50 Years (and Beyond).
Chem Rev. 2015 Oct 14;115(19):11043-78. doi: 10.1021/cr5006793. Epub 2015 Apr 15.
3
Production of limit size nanoliposomal systems with potential utility as ultra-small drug delivery agents.
J Liposome Res. 2016;26(2):96-102. doi: 10.3109/08982104.2015.1025411. Epub 2015 Apr 9.
4
Nanoliter-droplet acoustic streaming via ultra high frequency surface acoustic waves.
Adv Mater. 2014 Aug 6;26(29):4941-6. doi: 10.1002/adma.201400091. Epub 2014 Mar 27.
6
Surface acoustic wave microfluidics.
Lab Chip. 2013 Sep 21;13(18):3626-49. doi: 10.1039/c3lc50361e.
7
Microfluidic Synthesis of Highly Potent Limit-size Lipid Nanoparticles for In Vivo Delivery of siRNA.
Mol Ther Nucleic Acids. 2012 Aug 14;1(8):e37. doi: 10.1038/mtna.2012.28.
8
NIH Image to ImageJ: 25 years of image analysis.
Nat Methods. 2012 Jul;9(7):671-5. doi: 10.1038/nmeth.2089.
9
Self-assembly of stable monomolecular nucleic acid lipid particles with a size of 30 nm.
J Am Chem Soc. 2012 Jul 18;134(28):11652-8. doi: 10.1021/ja302930b. Epub 2012 Jul 3.
10
Controlled nucleation of lipid nanoparticles.
Pharm Res. 2012 Aug;29(8):2236-48. doi: 10.1007/s11095-012-0752-2. Epub 2012 Apr 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验