Suppr超能文献

利用声发射光谱能量分布图和卷积神经网络诊断变速条件下的轴承缺陷

Diagnosis of bearing defects under variable speed conditions using energy distribution maps of acoustic emission spectra and convolutional neural networks.

作者信息

Tra Viet, Khan Sheraz Ali, Kim Jong-Myon

机构信息

School of Electrical, Electronics, and Computer Engineering, University of Ulsan, Ulsan, South Korea

出版信息

J Acoust Soc Am. 2018 Oct;144(4):EL322. doi: 10.1121/1.5065071.

Abstract

This letter proposes an efficient scheme for the early diagnosis of bearing defects using a convolutional neural network (CNN) and energy distribution maps (EDMs) of acoustic emission spectra. The CNN automates the process of feature extraction from the EDM. The features learned by the CNN are used by an ensemble classifier, that is, a combination of a multilayer perceptron that is integral to typical CNN architectures and a support vector machine to diagnose bearing defects. The experimental results confirm that the proposed scheme diagnoses bearing defects more effectively than existing methods under variable speed conditions.

摘要

本文提出了一种利用卷积神经网络(CNN)和声发射光谱能量分布图(EDM)对轴承缺陷进行早期诊断的有效方案。CNN实现了从EDM中自动提取特征的过程。CNN学习到的特征被一个集成分类器使用,即一个典型CNN架构中不可或缺的多层感知器和一个支持向量机的组合,用于诊断轴承缺陷。实验结果证实,所提出的方案在变速条件下比现有方法能更有效地诊断轴承缺陷。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验