Tra Viet, Khan Sheraz Ali, Kim Jong-Myon
School of Electrical, Electronics, and Computer Engineering, University of Ulsan, Ulsan, South Korea
J Acoust Soc Am. 2018 Oct;144(4):EL322. doi: 10.1121/1.5065071.
This letter proposes an efficient scheme for the early diagnosis of bearing defects using a convolutional neural network (CNN) and energy distribution maps (EDMs) of acoustic emission spectra. The CNN automates the process of feature extraction from the EDM. The features learned by the CNN are used by an ensemble classifier, that is, a combination of a multilayer perceptron that is integral to typical CNN architectures and a support vector machine to diagnose bearing defects. The experimental results confirm that the proposed scheme diagnoses bearing defects more effectively than existing methods under variable speed conditions.
本文提出了一种利用卷积神经网络(CNN)和声发射光谱能量分布图(EDM)对轴承缺陷进行早期诊断的有效方案。CNN实现了从EDM中自动提取特征的过程。CNN学习到的特征被一个集成分类器使用,即一个典型CNN架构中不可或缺的多层感知器和一个支持向量机的组合,用于诊断轴承缺陷。实验结果证实,所提出的方案在变速条件下比现有方法能更有效地诊断轴承缺陷。