Suppr超能文献

数据库查询急性充血性心力衰竭住院治疗:基于集合论的灵活方法和验证。

Database queries for hospitalizations for acute congestive heart failure: flexible methods and validation based on set theory.

机构信息

Children's Health Services Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA.

出版信息

J Am Med Inform Assoc. 2014 Mar-Apr;21(2):345-52. doi: 10.1136/amiajnl-2013-001942. Epub 2013 Oct 10.

Abstract

BACKGROUND AND OBJECTIVE

Electronic health records databases are increasingly used for identifying cohort populations, covariates, or outcomes, but discerning such clinical 'phenotypes' accurately is an ongoing challenge. We developed a flexible method using overlapping (Venn diagram) queries. Here we describe this approach to find patients hospitalized with acute congestive heart failure (CHF), a sampling strategy for one-by-one 'gold standard' chart review, and calculation of positive predictive value (PPV) and sensitivities, with SEs, across different definitions.

MATERIALS AND METHODS

We used retrospective queries of hospitalizations (2002-2011) in the Indiana Network for Patient Care with any CHF ICD-9 diagnoses, a primary diagnosis, an echocardiogram performed, a B-natriuretic peptide (BNP) drawn, or BNP >500 pg/mL. We used a hybrid between proportional sampling by Venn zone and over-sampling non-overlapping zones. The acute CHF (presence/absence) outcome was based on expert chart review using a priori criteria.

RESULTS

Among 79,091 hospitalizations, we reviewed 908. A query for any ICD-9 code for CHF had PPV 42.8% (SE 1.5%) for acute CHF and sensitivity 94.3% (1.3%). Primary diagnosis of 428 and BNP >500 pg/mL had PPV 90.4% (SE 2.4%) and sensitivity 28.8% (1.1%). PPV was <10% when there was no echocardiogram, no BNP, and no primary diagnosis. 'False positive' hospitalizations were for other heart disease, lung disease, or other reasons.

CONCLUSIONS

This novel method successfully allowed flexible application and validation of queries for patients hospitalized with acute CHF.

摘要

背景和目的

电子健康记录数据库越来越多地被用于识别队列人群、协变量或结果,但准确识别这些临床“表型”仍然是一个持续的挑战。我们开发了一种使用重叠(Venn 图)查询的灵活方法。在这里,我们描述了这种方法,用于查找因急性充血性心力衰竭(CHF)住院的患者,一种逐个“金标准”图表审查的抽样策略,以及不同定义下的阳性预测值(PPV)和敏感度的计算,同时计算标准误(SE)。

材料和方法

我们使用印第安纳州患者护理网络中 2002 年至 2011 年的住院记录进行回顾性查询,这些记录具有任何 CHF ICD-9 诊断、主要诊断、进行的超声心动图检查、抽取的 B 型利钠肽(BNP)或 BNP>500pg/mL。我们使用 Venn 区的比例抽样和非重叠区的过采样的混合方法。急性 CHF(存在/不存在)的结果是基于使用先验标准的专家图表审查。

结果

在 79091 次住院中,我们审查了 908 次。任何 CHF ICD-9 代码的查询对急性 CHF 的 PPV 为 42.8%(SE 为 1.5%),敏感度为 94.3%(1.3%)。428 次主要诊断和 BNP>500pg/mL 的查询的 PPV 为 90.4%(SE 为 2.4%),敏感度为 28.8%(1.1%)。当没有进行超声心动图检查、没有 BNP 检查且没有主要诊断时,PPV<10%。“假阳性”住院是由于其他心脏病、肺部疾病或其他原因。

结论

这种新方法成功地允许灵活应用和验证用于因急性 CHF 住院的患者的查询。

相似文献

引用本文的文献

9
Reply to Rousseau and Tierney.对卢梭和蒂尔尼的回复。
J Am Med Inform Assoc. 2021 Mar 1;28(3):666-667. doi: 10.1093/jamia/ocaa286.

本文引用的文献

5
Next-generation phenotyping of electronic health records.电子健康记录的下一代表型分析。
J Am Med Inform Assoc. 2013 Jan 1;20(1):117-21. doi: 10.1136/amiajnl-2012-001145. Epub 2012 Sep 6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验