CIDCA (Centro de Investigación y Desarrollo en Criotecnología de Alimentos), 47 y 116 S/N, La Plata B1900AJJ, Buenos Aires, Argentina; Centro Científico Tecnológico La Plata (CCT-La Plata) CONICET, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA), La Plata 1900, Argentina.
CIDCA (Centro de Investigación y Desarrollo en Criotecnología de Alimentos), 47 y 116 S/N, La Plata B1900AJJ, Buenos Aires, Argentina; Centro Científico Tecnológico La Plata (CCT-La Plata) CONICET, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA), La Plata 1900, Argentina; Facultad de Ciencias exactas, UNLP, La Plata 1900, Argentina.
Int J Biol Macromol. 2019 Feb 15;123:189-200. doi: 10.1016/j.ijbiomac.2018.11.035. Epub 2018 Nov 9.
Chitosan-based nanocomposites have a significant industrial impact related to the possibility to design and create new materials and structures. Cellulose nanocrystals (CNC) can be extracted from microcrystalline cellulose (MCC) by controlled acid hydrolysis with HSO. This work was focused on: to study the microstructure of CNC isolated from MCC after different hydrolysis times; to develop nanocomposites chitosan-based films; to characterize their structural and thermo-mechanical properties; to analyze the spectral differences among samples by means of ATR-FTIR in combination with principal component analysis (PCA) and square partial minimums model (PLS). It is worth noting that the selected condition for isolate the CNC from MCC was the acid treatment for 2 h, evidenced by size measurements. This fact was supported by transmission electron microscope (TEM) and dynamic light scattering (DLS). In this regard, SEM studies of films showed an assembly process between the nanocelluloses and the CH matrix. The incorporation of CNC into the films resulted in strong interactions between the filler and the matrix demonstrating the affinity between the phases and modifying the mechanical profiles. In summary, CNC was found to be a satisfactory reinforcing agent in biodegradable nanocomposite chitosan-based packaging and are promising as a means to develop tailor-made materials.
壳聚糖基纳米复合材料具有重要的工业影响,因为它们有可能设计和创造新材料和结构。纤维素纳米晶体(CNC)可以通过用 HSO 进行受控酸水解从微晶纤维素(MCC)中提取。这项工作的重点是:研究从 MCC 中分离出的 CNC 在不同水解时间后的微观结构;开发壳聚糖基纳米复合材料薄膜;表征它们的结构和热机械性能;通过 ATR-FTIR 与主成分分析(PCA)和二次最小模型(PLS)相结合分析样品之间的光谱差异。值得注意的是,从 MCC 中分离 CNC 的选择条件是酸处理 2 小时,这一点可以通过尺寸测量来证明。这一事实得到了透射电子显微镜(TEM)和动态光散射(DLS)的支持。在这方面,薄膜的 SEM 研究表明纳米纤维素和 CH 基体之间存在组装过程。将 CNC 掺入薄膜中导致填料和基质之间的强相互作用,证明了各相间的亲和力并改变了机械性能。总之,发现 CNC 是可生物降解纳米复合材料壳聚糖基包装的一种令人满意的增强剂,有望成为开发定制材料的一种手段。