文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Nanoparticle-Doped Antibacterial and Antifungal Coatings.

作者信息

Thapliyal Devyani, Verros George D, Arya Raj Kumar

机构信息

Department of Chemical Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India.

Department of Chemistry, Aristotle University of Thessaloniki, Plagiari Thes., P.O. Box 454, 57500 Epanomi, Greece.

出版信息

Polymers (Basel). 2025 Jan 20;17(2):247. doi: 10.3390/polym17020247.


DOI:10.3390/polym17020247
PMID:39861318
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11768809/
Abstract

Antimicrobial polymeric coatings rely not only on their surface functionalities but also on nanoparticles (NPs). Antimicrobial coatings gain their properties from the addition of NPs into a polymeric matrix. NPs that have been used include metal-based NPs, metal oxide NPs, carbon-based nanomaterials, and organic NPs. Copper NPs and silver NPs exhibit antibacterial and antifungal properties. So, when present in coatings, they will release metal ions with the combined effect of having bacteriostatic/bactericidal properties, preventing the growth of pathogens on surfaces covered by these nano-enhanced films. In addition, metal oxide NPs such as titanium dioxide NPs (TiO NPs) and zinc oxide NPs (ZnONPs) are used as NPs in antimicrobial polymeric coatings. Under UV irradiation, these NPs show photocatalytic properties that lead to the production of reactive oxygen species (ROS) when exposed to UV radiation. After various forms of nano-carbon materials were successfully developed over the past decade, they and their derivatives from graphite/nanotubes, and composite sheets have been receiving more attention because they share an extremely large surface area, excellent mechanical strength, etc. These NPs not only show the ability to cause oxidative stress but also have the ability to release antimicrobial chemicals under control, resulting in long-lasting antibacterial action. The effectiveness and life spans of the antifouling performance of a variety of polymeric materials have been improved by adding nano-sized particles to those coatings.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd4c/11768809/b9ce8a6a47d5/polymers-17-00247-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd4c/11768809/a2fed8dac3c4/polymers-17-00247-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd4c/11768809/77a2249e1037/polymers-17-00247-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd4c/11768809/7eaca3dd8120/polymers-17-00247-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd4c/11768809/5e2815d8dc42/polymers-17-00247-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd4c/11768809/43f703813d7a/polymers-17-00247-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd4c/11768809/e99d09a6e1fe/polymers-17-00247-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd4c/11768809/62a06c4dea55/polymers-17-00247-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd4c/11768809/43a7b9ee4be0/polymers-17-00247-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd4c/11768809/b9ce8a6a47d5/polymers-17-00247-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd4c/11768809/a2fed8dac3c4/polymers-17-00247-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd4c/11768809/77a2249e1037/polymers-17-00247-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd4c/11768809/7eaca3dd8120/polymers-17-00247-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd4c/11768809/5e2815d8dc42/polymers-17-00247-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd4c/11768809/43f703813d7a/polymers-17-00247-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd4c/11768809/e99d09a6e1fe/polymers-17-00247-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd4c/11768809/62a06c4dea55/polymers-17-00247-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd4c/11768809/43a7b9ee4be0/polymers-17-00247-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd4c/11768809/b9ce8a6a47d5/polymers-17-00247-g009.jpg

相似文献

[1]
Nanoparticle-Doped Antibacterial and Antifungal Coatings.

Polymers (Basel). 2025-1-20

[2]
Visible-Light Active Titanium Dioxide Nanomaterials with Bactericidal Properties.

Nanomaterials (Basel). 2020-1-9

[3]
Anodised TiO nanotubes as a scaffold for antibacterial silver nanoparticles on titanium implants.

Mater Sci Eng C Mater Biol Appl. 2018-5-28

[4]
The Modification of In Situ SiOx Chitosan Coatings by ZnO/TiO NPs and Its Preservation Properties to Silver Carp Fish Balls.

J Food Sci. 2018-12-5

[5]
Bioinspired Photocatalytic Shark-Skin Surfaces with Antibacterial and Antifouling Activity via Nanoimprint Lithography.

ACS Appl Mater Interfaces. 2018-6-1

[6]
Antibacterial properties of silver nanoparticles grown and anchored to titanium dioxide nanotubes on titanium implant against .

Nanotoxicology. 2019-9-30

[7]
Bactericidal and Virucidal Activities of Biogenic Metal-Based Nanoparticles: Advances and Perspectives.

Antibiotics (Basel). 2021-6-28

[8]
Synthesis, Photocatalytic, and Antifungal Properties of MgO, ZnO and Zn/Mg Oxide Nanoparticles for the Protection of Calcareous Stone Heritage.

ACS Appl Mater Interfaces. 2017-7-17

[9]
Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism.

Nanomicro Lett. 2015

[10]
Antimicrobial Hybrid Coatings Combining Enhanced Biocidal Activity under Visible-Light Irradiation with Stimuli-Renewable Properties.

ACS Appl Mater Interfaces. 2021-4-21

引用本文的文献

[1]
Antifungal Nanocomposites from Honeybee Chitosan and Royal Jelly-Mediated Nanosilver for Suppressing Biofilm and Hyphal Formation of .

Polymers (Basel). 2025-7-11

[2]
Effect of Silver Nanoparticles on pH-Indicative Color Response and Moisture Content in Intelligent Films Based on Peruvian Purple Potato and Polyvinyl Alcohol.

Polymers (Basel). 2025-5-27

[3]
Research Progress in Medical Biomaterials for Bone Infections.

J Funct Biomater. 2025-5-21

[4]
Advancing Gel Systems with Natural Extracts: Antioxidant, Antimicrobial Applications, and Sustainable Innovations.

Gels. 2025-2-8

本文引用的文献

[1]
Advancements in Binary Solvent-Assisted Hydrogel Composites for Wearable Sensing Applications.

Materials (Basel). 2024-11-13

[2]
Effect of silver ion and silicate group on the antibacterial and antifungal properties of nanosized hydroxyapatite.

Sci Rep. 2024-11-26

[3]
Gamma irradiation green synthesis of (polyacrylamide/chitosan/silver nanoparticles) hydrogel nanocomposites and their using as antifungal against Candida albicans and anti-cancer modulator.

Sci Rep. 2024-10-28

[4]
Green Synthesis of Hexagonal-like ZnO Nanoparticles Modified with Phytochemicals of Clove () and Extracts: Enhanced Antibacterial, Antifungal, and Antioxidant Activities.

Materials (Basel). 2024-9-2

[5]
Characterization of Melt-Spun Recycled PA 6 Polymer by Adding ZnO Nanoparticles during the Extrusion Process.

Polymers (Basel). 2024-7-1

[6]
L. extract-based Gold (Au) and Silver (Ag) nanoparticles (NPs): Green synthesis, characterization, and assessment of antibacterial and antifungal properties.

Food Sci Nutr. 2024-3-19

[7]
Spray-Dried Nanolipid Powders for Pulmonary Drug Delivery: A Comprehensive Mini Review.

Pharmaceutics. 2024-5-17

[8]
Investigation of Levan-Derived Nanoparticles of Dolutegravir: A Promising Approach for the Delivery of Anti-HIV Drug as Milk Admixture.

J Pharm Sci. 2024-8

[9]
Preparation and Evaluation of Chitosan Coated PLGA Nanoparticles Encapsulating Ivosidenib with Enhanced Cytotoxicity Against Human Liver Cancer Cells.

Int J Nanomedicine. 2024-4-9

[10]
Innovative Electrospun Nanofiber Mats Based on Polylactic Acid Composited with Silver Nanoparticles for Medical Applications.

Polymers (Basel). 2024-2-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索