Institute of Sensor and Actuator Systems, TU Wien, 1040 Vienna, Austria.
Sensors (Basel). 2018 Nov 9;18(11):3842. doi: 10.3390/s18113842.
In atomic force microscopes (AFM) a resonantly excited, micro-machined cantilever with a tip is used for sensing surface-related properties. When targeting the integration of AFMs into vacuum environments (e.g., for enhancing the performance of scanning electron microscopes), a tuneable Q-factor of the resonating AFM cantilever is a key feature to enable high speed measurements with high local resolution. To achieve this goal, in this study an additional mechanical stimulus is applied to the cantilever with respect to the stimulus provided by the macroscopic piezoelectric actuator. This additional stimulus is generated by an aluminum nitride piezoelectric thin film actuator integrated on the cantilever, which is driven by a phase shifted excitation. The Q-factor is determined electrically by the piezoelectric layer in a Wheatstone bridge configuration and optically verified in parallel with a laser Doppler vibrometer. Depending on the measurement technique, the Q-factor is reduced by a factor of about 1.9 (electrically) and 1.6 (optically), thus enabling the damping of MEMS structures with a straight-forward and cheap electronic approach.
在原子力显微镜(AFM)中,使用共振激发的微加工悬臂梁和尖端来感测与表面相关的性质。当目标是将 AFM 集成到真空环境中(例如,为了提高扫描电子显微镜的性能)时,可调谐的共振 AFM 悬臂梁的 Q 因子是实现高速测量和高局部分辨率的关键特征。为了实现这一目标,在这项研究中,相对于宏观压电致动器提供的刺激,在悬臂梁上施加了额外的机械刺激。这种额外的刺激是由集成在悬臂梁上的氮化铝压电薄膜致动器产生的,它由相移激励驱动。Q 因子通过惠斯通电桥配置中的压电层电测定,并与激光多普勒测振仪并行光学验证。根据测量技术的不同,Q 因子降低了约 1.9 倍(电)和 1.6 倍(光),从而可以通过简单且廉价的电子方法来阻尼 MEMS 结构。