Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
Bioinformatics. 2019 Jun 1;35(12):2100-2107. doi: 10.1093/bioinformatics/bty906.
Computational drug target prediction has become an important process in drug discovery. Network-based approaches are commonly used in computational drug-target interaction (DTI) prediction. Existing network-based approaches are limited in capturing the contextual information on how diseases, drugs and genes are connected. Here, we proposed a context-sensitive network (CSN) model for DTI prediction by modeling contextual drug phenotypic relationships. We constructed a Drug-Side Effect Context-Sensitive Network (DSE-CSN) of 139 760 drug-side effect pairs, representing 1480 drugs and 5868 side effects. We also built a protein-protein interaction network (PPIN) of 15 267 gene nodes and 178 972 weighted edges. A heterogeneous network was built by connecting the DSE-CSN and the PPIN through 3684 known DTIs. For each drug on the DSE-CSN, its genetic targets were predicted and prioritized using a network-based ranking algorithm. Our approach was evaluated in both de novo and leave-one-out cross-validation analysis using known DTIs as the gold standard. We compared our DSE-CSN-based model to the traditional similarity-based network (SBN)-based prediction model. The results suggested that the DSE-CSN-based model was able to rank known DTIs highly. In a de novo cross-validation, the area under the receiver operating characteristic (ROC) curve was 0.95. In a leave-one-out cross-validation, the average rank was top 3.2% for known DTIs. When it was compared to the SBN-based model using the Precision-Recall curve, our CSN-based model achieved a higher mean average precision (MAP) (0.23 versus 0.19, P-value<1e-4) in a de novo cross-validation analysis. We further improved the CSN-based DTI prediction by differentially weighting the drug-side effect pairs on the network and showed a significant improvement of the MAP (0.29 versus 0.23, P-value<1e-4). We also showed that the CSN-based model consistently achieved better performances than the traditional SBN-based model across different drug classes. Moreover, we demonstrated that our novel DTI predictions can be supported by published literature. In summary, the CSN-based model, by modeling the context-specific inter-relationships among drugs and side effects, has a high potential in drug target prediction.
nlp/case/edu/public/data/DSE/CSN_DTI.
计算药物靶标预测已成为药物发现的重要过程。基于网络的方法常用于计算药物-靶标相互作用(DTI)预测。现有的基于网络的方法在捕获有关疾病、药物和基因如何相互关联的上下文信息方面存在局限性。在这里,我们通过对药物表型关系进行建模,提出了一种用于 DTI 预测的上下文敏感网络(CSN)模型。我们构建了一个包含 139760 个药物-副作用对的药物-副作用上下文敏感网络(DSE-CSN),代表了 1480 种药物和 5868 种副作用。我们还构建了一个包含 15267 个基因节点和 178972 个加权边的蛋白质-蛋白质相互作用网络(PPIN)。通过 3684 个已知的 DTI 将 DSE-CSN 和 PPIN 连接起来,构建了一个异质网络。对于 DSE-CSN 上的每种药物,我们使用基于网络的排名算法预测其遗传靶标并对其进行优先级排序。我们使用已知的 DTI 作为金标准,在从头开始和留一法交叉验证分析中评估了我们的方法。我们将基于 DSE-CSN 的模型与传统的基于相似性的网络(SBN)预测模型进行了比较。结果表明,基于 DSE-CSN 的模型能够很好地对已知的 DTI 进行排序。在从头开始的交叉验证中,接收器操作特征(ROC)曲线下的面积为 0.95。在留一法交叉验证中,对于已知的 DTI,平均排名在前 3.2%。与使用 Precision-Recall 曲线的 SBN 模型相比,我们的 CSN 模型在从头开始的交叉验证分析中实现了更高的平均精度(MAP)(0.23 对 0.19,P 值<1e-4)。我们通过在网络上对药物-副作用对进行差异加权进一步改进了基于 CSN 的 DTI 预测,并显示出 MAP 的显著提高(0.29 对 0.23,P 值<1e-4)。我们还表明,基于 CSN 的模型在不同药物类别中始终优于传统的基于 SBN 的模型。此外,我们证明了我们的新 DTI 预测可以得到已发表文献的支持。总之,基于 CSN 的模型通过对药物和副作用之间的特定上下文关系进行建模,在药物靶标预测方面具有很高的潜力。
nlp/case/edu/public/data/DSE/CSN_DTI。