Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 76100, Israel.
Nanoscale. 2018 Nov 29;10(46):21712-21720. doi: 10.1039/c8nr06627b.
The incorporation of proteins as functional components in electronic junctions has received much interest recently due to their diverse bio-chemical and physical properties. However, information regarding the energies of the frontier orbitals involved in their electron transport (ETp) has remained elusive. Here we employ a new method to quantitatively determine the energy position of the molecular orbital, nearest to the Fermi level (EF) of the electrode, in the electron transfer protein Azurin. The importance of the Cu(ii) redox center of Azurin is demonstrated by measuring gate-controlled conductance switching which is absent if Azurin's copper ions are removed. Comparing different electrode materials, a higher conductance and a lower gate-induced current onset is observed for the material with smaller work function, indicating that ETp via Azurin is LUMO-mediated. We use the difference in work function to calibrate the difference in gate-induced current onset for the two electrode materials, to a specific energy level shift and find that ETp via Azurin is near resonance. Our results provide a basis for mapping and studying the role of energy level positions in (bio)molecular junctions.
由于蛋白质具有多样化的生物化学和物理特性,因此将其作为功能组件纳入电子结中引起了广泛关注。然而,关于其电子输运(ETp)中涉及的前沿轨道能量的信息仍然难以捉摸。在这里,我们采用一种新方法来定量确定电子转移蛋白蓝铜蛋白中最接近电极费米能级(EF)的分子轨道的能量位置。通过测量门控电导开关来证明蓝铜蛋白的 Cu(ii) 氧化还原中心的重要性,如果去除蓝铜蛋白的铜离子,则不会发生门控电导开关。比较不同的电极材料,我们发现功函数较小的材料具有更高的电导率和更低的门控电流起始,这表明通过蓝铜蛋白的 ETp 是通过 LUMO 介导的。我们使用功函数的差异来校准两种电极材料的门控电流起始的差异,以获得特定的能级位移,并发现通过蓝铜蛋白的 ETp 接近共振。我们的结果为(生物)分子结中能级位置的映射和研究提供了基础。