Fachgebiet Nanotechnologie , Technische Universität Ilmenau , Gustav-Kirchhoff-Strasse 1 , Ilmenau D-98693 , Germany.
Fachgebiet Elektrochemie und Galvanotechnik , Technische Universität Ilmenau , Gustav-Kirchhoff-Strasse 6 , Ilmenau D-98693 , Germany.
ACS Appl Mater Interfaces. 2018 Nov 28;10(47):40608-40613. doi: 10.1021/acsami.8b12390. Epub 2018 Nov 15.
We demonstrate the realization of core-shell transformation-imprinted solder bumps to enable low-temperature chip assembly, while providing a route to high-temperature interconnects through transformation. The reported core-shell solder bump uses a lower melting point BiIn-based shell and a higher melting point Sn core in the initial stage. The bumps enable fluidic self-assembly and self-alignment at relatively low temperatures (60-80 °C). The bumps use the high surface free energy of the liquid shell during the self-assembly to capture freely suspended Si dies inside a heated (80 °C) water bath, leading to well-ordered defect-free chip arrays; the molten liquid shell wets the metal contact (binding site) on the chips and yields self-aligned and electrically connected devices. The solid core provides the anchor point to the substrate. After the completion of the assembly, a short reflow raises the melting point, yielding a solid electrical connection. The low melting point liquid diffuses into the high melting point core. The tuning of the material ratios leads to tailored transformation-imprinted solders with high melting points (160-206 °C) in the final structure.
我们展示了核壳转变印迹焊点的实现,以实现低温芯片组装,同时通过转变提供了高温互连的途径。所报道的核壳焊点在初始阶段使用较低熔点的 BiIn 基壳和较高熔点的 Sn 核。在相对较低的温度(60-80°C)下,焊点能够实现流体自组装和自对准。焊点在自组装过程中利用液体壳的高表面自由能来捕获在加热(80°C)水浴中自由悬浮的 Si 管芯,从而得到有序且无缺陷的芯片阵列;熔融的液体壳润湿芯片上的金属接触(结合部位),并产生自对准和电连接的器件。固体核心为基底提供锚固点。组装完成后,短暂回流会提高熔点,形成可靠的电气连接。低熔点的液体扩散到高熔点的核心中。通过调整材料比例,可以在最终结构中得到具有较高熔点(160-206°C)的定制转变印迹焊料。