Suppr超能文献

用于全自动多电极阵列尖峰分类的独立成分分析

Independent Component Analysis for Fully Automated Multi-Electrode Array Spike Sorting.

作者信息

Buccino Alessio P, Hagen Espen, Einevoll Gaute T, Hafliger Philipp D, Cauwenbergh Gert

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:2627-2630. doi: 10.1109/EMBC.2018.8512788.

Abstract

In neural electrophysiology, spike sorting allows to separate different neurons from extracellularly measured recordings. It is an essential processing step in order to understand neural activity and it is an unsupervised problem in nature, since no ground truth information is available. There are several available spike sorting packages, but many of them require a manual intervention to curate the results, which makes the process time consuming and hard to reproduce. Here, we focus on high-density Multi-Electrode Array (MEA) recordings and we present a fully automated pipeline based on Independent Component Analysis (ICA). While ICA has been previously investigated for spike sorting, it has never been compared with fully automated state-of-the-art algorithms. We use realistic simulated datasets to compare the spike sorting performance in terms of complexity, signal-to-noise ratio, and recording duration. We show that an ICA-based fully automated spike sorting approach can be a viable alternative approach due to its precision and robustness, but it needs to be optimized for time constraints and requires sufficient density of electrodes to cover active neurons in the proximity of the MEA.

摘要

在神经电生理学中,尖峰分类可从细胞外测量记录中分离出不同的神经元。这是理解神经活动的一个重要处理步骤,并且本质上是一个无监督问题,因为没有可用的真实信息。有几个可用的尖峰分类软件包,但其中许多都需要人工干预来整理结果,这使得该过程既耗时又难以重现。在这里,我们专注于高密度多电极阵列(MEA)记录,并提出了一种基于独立成分分析(ICA)的全自动流程。虽然ICA此前已被用于尖峰分类研究,但从未与全自动的最先进算法进行过比较。我们使用逼真的模拟数据集,从复杂度、信噪比和记录时长方面比较尖峰分类性能。我们表明,基于ICA的全自动尖峰分类方法因其精度和稳健性可以成为一种可行的替代方法,但它需要针对时间限制进行优化,并且需要足够的电极密度来覆盖MEA附近的活跃神经元。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验