Suppr超能文献

一种用于尖峰-场活动的多尺度因果关系的信息论度量

An Information-Theoretic Measure of Multiscale Causality for Spike-Field Activity.

作者信息

Wang Chuanmeizhi, Shanechi Maryam M

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:2631-2634. doi: 10.1109/EMBC.2018.8512823.

Abstract

Simultaneous recordings of spikes and fields could enable analyses of functional connectivity in the brain at multiple spatiotemporal scales. However, these analyses require developing novel methods to assess causality between binary-valued spikes and continuous-valued fields, which have fundamentally different statistical profiles and time-scales. Thus classical measures of causality cannot be directly applied in multiscale networks. We develop a novel parametric method to assess causality for multiscale spike-field activities by computing directed information. Directed information is an information theoretic measure of causality but is in general hard to estimate. Our method estimates the causality in two steps. First, we construct point process generalized linear models (GLM) for each neuron's spiking activity to estimate its firing rate using the history of both spikes and fields and compute the directed information to spike nodes from any node. Second, we construct regression models for fields using the history of the estimated firing rates and the history of fields, and then compute the directed information to each field node from any node. In both steps, we estimate model parameters using maximum likelihood and devise statistical tests to assess the significance of the causality. Using simulated data from basic three-node structures and a ten-node network, we show that our method can asymptotically identify the true causality. This method could help uncover functional connectivity in the brain at multiple spatiotemporal scales.

摘要

同时记录尖峰信号和场信号能够在多个时空尺度上对大脑中的功能连接性进行分析。然而,这些分析需要开发新的方法来评估二值化尖峰信号与连续值场信号之间的因果关系,因为它们具有根本不同的统计特征和时间尺度。因此,经典的因果关系度量方法不能直接应用于多尺度网络。我们开发了一种新的参数化方法,通过计算定向信息来评估多尺度尖峰 - 场活动的因果关系。定向信息是一种因果关系的信息论度量,但一般来说很难估计。我们的方法分两步估计因果关系。首先,我们为每个神经元的尖峰活动构建点过程广义线性模型(GLM),使用尖峰信号和场信号的历史来估计其发放率,并计算从任何节点到尖峰节点的定向信息。其次,我们使用估计的发放率历史和场信号历史为场信号构建回归模型,然后计算从任何节点到每个场节点的定向信息。在这两个步骤中,我们使用最大似然估计模型参数,并设计统计检验来评估因果关系的显著性。使用来自基本三节点结构和十节点网络的模拟数据,我们表明我们的方法能够渐近地识别真正的因果关系。该方法有助于揭示大脑在多个时空尺度上的功能连接性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验