Suppr超能文献

使用感觉运动控制的系统级模型重建神经活动和运动学

Reconstructing Neural Activity and Kinematics Using a Systems-Level Model of Sensorimotor Control.

作者信息

Saxena Shreya, D'Aleo Raina, Schieber Marc, Dahleh Munther, Sarma Sridevi V

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:5182-5186. doi: 10.1109/EMBC.2018.8513433.

Abstract

There are two popular and largely independent approaches to study the sensorimotor control system (SCS). One is to construct systems-level models of the SCS that characterize dynamics of motor regions in the brain, alpha motor neurons, and the musculoskeletal system to reconstruct motor behavior. These models view the brain as a feedforward and feedback controller that actuates the musculoskeletal system, and have been useful in understanding how the SCS generates movements. Another approach is to measure neural activity and movements simultaneously in primate and human subjects,and the nanalyze the data tounder standhow the brain encodes and controls movement. In this paper, we combine these two approaches by fitting parameters of a systems-level model of the SCS to neural activity and behavior measured from a nonhuman primate executing four types of reach-tograsp tasks. We applied a nonlinear least squares estimation to fit parameters of the model components that characterize cerebrocerebellar processing of movement error and muscles that are actuated by alpha motor neurons receiving commands from primary motor cortex (M1). Our fitted SCS model accurately reconstructs firing rate activity of six populations of M1 neurons and associated reaching trajectories. This study paves the way for the validation of systems-level models of the SCS using experimental data.

摘要

研究感觉运动控制系统(SCS)有两种流行且在很大程度上相互独立的方法。一种是构建SCS的系统级模型,该模型描述大脑运动区域、α运动神经元和肌肉骨骼系统的动态,以重建运动行为。这些模型将大脑视为驱动肌肉骨骼系统的前馈和反馈控制器,并且在理解SCS如何产生运动方面很有用。另一种方法是在灵长类动物和人类受试者中同时测量神经活动和运动,然后分析数据以了解大脑如何编码和控制运动。在本文中,我们通过将SCS系统级模型的参数拟合到从执行四种抓握任务的非人类灵长类动物测量的神经活动和行为,将这两种方法结合起来。我们应用非线性最小二乘法来拟合模型组件的参数,这些组件表征了运动误差的小脑-大脑处理以及由接收来自初级运动皮层(M1)命令的α运动神经元驱动的肌肉。我们拟合的SCS模型准确地重建了M1神经元六个群体的放电率活动以及相关的伸手轨迹。这项研究为使用实验数据验证SCS的系统级模型铺平了道路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验