Suppr超能文献

运动感知控制中的性能限制:在快速运动跟踪中的神经计算和准确性之间的权衡。

Performance Limitations in Sensorimotor Control: Trade-Offs Between Neural Computation and Accuracy in Tracking Fast Movements.

机构信息

Department of Electrical Engineering and Computer Sciences, MIT, Cambridge, MA 02139, U.S.A.

Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21210, U.S.A.

出版信息

Neural Comput. 2020 May;32(5):865-886. doi: 10.1162/neco_a_01272. Epub 2020 Mar 18.

Abstract

The ability to move fast and accurately track moving objects is fundamentally constrained by the biophysics of neurons and dynamics of the muscles involved. Yet the corresponding trade-offs between these factors and tracking motor commands have not been rigorously quantified. We use feedback control principles to quantify performance limitations of the sensorimotor control system (SCS) to track fast periodic movements. We show that (1) linear models of the SCS fail to predict known undesirable phenomena, including skipped cycles, overshoot and undershoot, produced when tracking signals in the "fast regime," while nonlinear pulsatile control models can predict such undesirable phenomena, and (2) tools from nonlinear control theory allow us to characterize fundamental limitations in this fast regime. Using a validated and tractable nonlinear model of the SCS, we derive an analytical upper bound on frequencies that the SCS model can reliably track before producing such undesirable phenomena as a function of the neurons' biophysical constraints and muscle dynamics. The performance limitations derived here have important implications in sensorimotor control. For example, if the primary motor cortex is compromised due to disease or damage, the theory suggests ways to manipulate muscle dynamics by adding the necessary compensatory forces using an assistive neuroprosthetic device to restore motor performance and, more important, fast and agile movements. Just how one should compensate can be informed by our SCS model and the theory developed here.

摘要

快速准确地移动并跟踪移动物体的能力受到神经元的生物物理学和相关肌肉动力学的根本限制。然而,这些因素与跟踪运动指令之间的相应权衡并没有被严格量化。我们使用反馈控制原理来量化传感器运动控制系统 (SCS) 跟踪快速周期性运动的性能限制。我们表明:(1) SCS 的线性模型无法预测当跟踪“快速模式”中的信号时会产生的已知不良现象,包括跳过周期、过冲和欠冲,而非线性脉冲控制模型可以预测这些不良现象;(2) 非线性控制理论的工具允许我们描述这种快速模式下的基本限制。我们使用经过验证且易于处理的 SCS 非线性模型,推导出 SCS 模型在产生不良现象之前可靠跟踪的频率的上限,这是神经元生物物理约束和肌肉动力学的函数。这里得出的性能限制在传感器运动控制中有重要意义。例如,如果由于疾病或损伤导致初级运动皮层受损,该理论建议通过使用辅助神经假体设备添加必要的补偿力来操纵肌肉动力学的方法,以恢复运动性能,更重要的是,恢复快速和敏捷的运动。如何进行补偿可以通过我们的 SCS 模型和这里发展的理论来告知。

相似文献

6
A muscle-activity-dependent gain between motor cortex and EMG.运动皮层与肌电图之间的肌肉活动相关增益。
J Neurophysiol. 2019 Jan 1;121(1):61-73. doi: 10.1152/jn.00329.2018. Epub 2018 Oct 31.
7
Perspectives on classical controversies about the motor cortex.关于运动皮层经典争议的观点
J Neurophysiol. 2017 Sep 1;118(3):1828-1848. doi: 10.1152/jn.00795.2016. Epub 2017 Jun 14.

本文引用的文献

3
Does the motor system need intermittent control?运动系统是否需要间歇控制?
Exerc Sport Sci Rev. 2014 Jul;42(3):117-25. doi: 10.1249/JES.0000000000000018.
5
Optimal feedback control and the long-latency stretch response.最优反馈控制与长潜伏期牵张反应。
Exp Brain Res. 2012 May;218(3):341-59. doi: 10.1007/s00221-012-3041-8. Epub 2012 Feb 28.
8
AnimatLab: a 3D graphics environment for neuromechanical simulations.AnimatLab:一个用于神经机械模拟的 3D 图形环境。
J Neurosci Methods. 2010 Mar 30;187(2):280-8. doi: 10.1016/j.jneumeth.2010.01.005. Epub 2010 Jan 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验