Suppr超能文献

识别可能的创伤后应激障碍:将监督机器学习应用于英国军事队列数据。

Identifying probable post-traumatic stress disorder: applying supervised machine learning to data from a UK military cohort.

机构信息

a King's Centre for Military Health Research, Institute of Psychiatry, Psychology & Neuroscience , King's College , London , UK.

b School of Computing, Mathematics and Digital Technology , Manchester Metropolitan University.

出版信息

J Ment Health. 2019 Feb;28(1):34-41. doi: 10.1080/09638237.2018.1521946. Epub 2018 Nov 16.

Abstract

BACKGROUND

Early identification of probable post-traumatic stress disorder (PTSD) can lead to early intervention and treatment.

AIMS

This study aimed to evaluate supervised machine learning (ML) classifiers for the identification of probable PTSD in those who are serving, or have recently served in the United Kingdom (UK) Armed Forces.

METHODS

Supervised ML classification techniques were applied to a military cohort of 13,690 serving and ex-serving UK Armed Forces personnel to identify probable PTSD based on self-reported service exposures and a range of validated self-report measures. Data were collected between 2004 and 2009.

RESULTS

The predictive performance of supervised ML classifiers to detect cases of probable PTSD were encouraging when compared to a validated measure, demonstrating a capability of supervised ML to detect the cases of probable PTSD. It was possible to identify which variables contributed to the performance, including alcohol misuse, gender and deployment status. A satisfactory sensitivity was obtained across a range of supervised ML classifiers, but sensitivity was low, indicating a potential for false negative diagnoses.

CONCLUSIONS

Detection of probable PTSD based on self-reported measurement data is feasible, may greatly reduce the burden on public health and improve operational efficiencies by enabling early intervention, before manifestation of symptoms.

摘要

背景

早期识别可能的创伤后应激障碍(PTSD)可以实现早期干预和治疗。

目的

本研究旨在评估监督机器学习(ML)分类器在识别现役或最近曾在英国(UK)武装部队服役的人员中可能患有 PTSD 的情况。

方法

监督 ML 分类技术应用于一个由 13690 名现役和退役英国武装部队人员组成的军事队列,根据自我报告的服务暴露情况和一系列经过验证的自我报告测量来识别可能患有 PTSD 的情况。数据收集于 2004 年至 2009 年之间。

结果

与经过验证的测量方法相比,监督 ML 分类器对检测可能患有 PTSD 的病例的预测性能令人鼓舞,这表明监督 ML 具有检测可能患有 PTSD 的病例的能力。可以识别哪些变量对性能有贡献,包括酒精滥用、性别和部署状态。在一系列监督 ML 分类器中都获得了令人满意的灵敏度,但灵敏度较低,表明存在潜在的假阴性诊断。

结论

基于自我报告的测量数据来检测可能患有 PTSD 是可行的,这可能通过在症状出现之前实现早期干预,大大减轻公共卫生负担并提高运营效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验