Suppr超能文献

通过在 Twitter 上使用机器学习识别 COVID-19 幸存者中的创伤后应激障碍患者。

Identifying COVID-19 survivors living with post-traumatic stress disorder through machine learning on Twitter.

机构信息

Complex Human Behavior Laboratory, Fondazione Bruno Kessler, Trento, Italy.

Northeastern University, London, UK.

出版信息

Sci Rep. 2024 Aug 14;14(1):18902. doi: 10.1038/s41598-024-69687-8.

Abstract

The COVID-19 pandemic has disrupted people's lives and caused significant economic damage around the world, but its impact on people's mental health has not been paid due attention by the research community. According to anecdotal data, the pandemic has raised serious concerns related to mental health among the masses. However, no systematic investigations have been conducted previously on mental health monitoring and, in particular, detection of post-traumatic stress disorder (PTSD). The goal of this study is to use classical machine learning approaches to classify tweets into COVID-PTSD positive or negative categories. To this end, we employed various Machine Learning (ML) classifiers, to segregate the psychotic difficulties with the user's PTSD in the context of COVID-19, including Random Forest Support Vector Machine, Naïve Bayes, and K-Nearest Neighbor. ML models are trained and tested using various combinations of feature selection strategies to get the best possible combination. Based on our experimentation on real-world dataset, we demonstrate our model's effectiveness to perform classification with an accuracy of 83.29% using Support Vector Machine as classifier and unigram as a feature pattern.

摘要

新冠疫情大流行扰乱了人们的生活,给全世界造成了巨大的经济损失,但研究界没有充分关注其对人们心理健康的影响。根据传闻数据,疫情引起了公众对心理健康的严重关切。然而,以前没有对心理健康监测进行系统调查,特别是没有对创伤后应激障碍(PTSD)进行检测。本研究旨在使用经典机器学习方法将推文分为 COVID-PTSD 阳性或阴性类别。为此,我们采用了各种机器学习(ML)分类器,将与 COVID-19 背景下用户 PTSD 相关的精神障碍进行分类,包括随机森林支持向量机、朴素贝叶斯和 K-最近邻。使用各种特征选择策略的组合来训练和测试 ML 模型,以获得最佳的组合。基于我们对真实数据集的实验,我们展示了我们的模型使用支持向量机作为分类器和一元模型作为特征模式进行分类的有效性,准确率为 83.29%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c33c/11325037/834b59e24eda/41598_2024_69687_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验