文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过在 Twitter 上使用机器学习识别 COVID-19 幸存者中的创伤后应激障碍患者。

Identifying COVID-19 survivors living with post-traumatic stress disorder through machine learning on Twitter.

机构信息

Complex Human Behavior Laboratory, Fondazione Bruno Kessler, Trento, Italy.

Northeastern University, London, UK.

出版信息

Sci Rep. 2024 Aug 14;14(1):18902. doi: 10.1038/s41598-024-69687-8.


DOI:10.1038/s41598-024-69687-8
PMID:39143145
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11325037/
Abstract

The COVID-19 pandemic has disrupted people's lives and caused significant economic damage around the world, but its impact on people's mental health has not been paid due attention by the research community. According to anecdotal data, the pandemic has raised serious concerns related to mental health among the masses. However, no systematic investigations have been conducted previously on mental health monitoring and, in particular, detection of post-traumatic stress disorder (PTSD). The goal of this study is to use classical machine learning approaches to classify tweets into COVID-PTSD positive or negative categories. To this end, we employed various Machine Learning (ML) classifiers, to segregate the psychotic difficulties with the user's PTSD in the context of COVID-19, including Random Forest Support Vector Machine, Naïve Bayes, and K-Nearest Neighbor. ML models are trained and tested using various combinations of feature selection strategies to get the best possible combination. Based on our experimentation on real-world dataset, we demonstrate our model's effectiveness to perform classification with an accuracy of 83.29% using Support Vector Machine as classifier and unigram as a feature pattern.

摘要

新冠疫情大流行扰乱了人们的生活,给全世界造成了巨大的经济损失,但研究界没有充分关注其对人们心理健康的影响。根据传闻数据,疫情引起了公众对心理健康的严重关切。然而,以前没有对心理健康监测进行系统调查,特别是没有对创伤后应激障碍(PTSD)进行检测。本研究旨在使用经典机器学习方法将推文分为 COVID-PTSD 阳性或阴性类别。为此,我们采用了各种机器学习(ML)分类器,将与 COVID-19 背景下用户 PTSD 相关的精神障碍进行分类,包括随机森林支持向量机、朴素贝叶斯和 K-最近邻。使用各种特征选择策略的组合来训练和测试 ML 模型,以获得最佳的组合。基于我们对真实数据集的实验,我们展示了我们的模型使用支持向量机作为分类器和一元模型作为特征模式进行分类的有效性,准确率为 83.29%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c33c/11325037/5f4bc09126ce/41598_2024_69687_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c33c/11325037/834b59e24eda/41598_2024_69687_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c33c/11325037/7b3de82cf69c/41598_2024_69687_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c33c/11325037/08afab48a482/41598_2024_69687_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c33c/11325037/c0fc22a496ec/41598_2024_69687_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c33c/11325037/5f4bc09126ce/41598_2024_69687_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c33c/11325037/834b59e24eda/41598_2024_69687_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c33c/11325037/7b3de82cf69c/41598_2024_69687_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c33c/11325037/08afab48a482/41598_2024_69687_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c33c/11325037/c0fc22a496ec/41598_2024_69687_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c33c/11325037/5f4bc09126ce/41598_2024_69687_Fig5_HTML.jpg

相似文献

[1]
Identifying COVID-19 survivors living with post-traumatic stress disorder through machine learning on Twitter.

Sci Rep. 2024-8-14

[2]
A Hybrid Feature Extraction Method for Nepali COVID-19-Related Tweets Classification.

Comput Intell Neurosci. 2022

[3]
Twitter Discussions and Emotions About the COVID-19 Pandemic: Machine Learning Approach.

J Med Internet Res. 2020-11-25

[4]
Psychosocial Effects of the COVID-19 Pandemic: Large-scale Quasi-Experimental Study on Social Media.

J Med Internet Res. 2020-11-24

[5]
A new hybrid ensemble machine-learning model for severity risk assessment and post-COVID prediction system.

Math Biosci Eng. 2022-4-13

[6]
Natural Language Processing Reveals Vulnerable Mental Health Support Groups and Heightened Health Anxiety on Reddit During COVID-19: Observational Study.

J Med Internet Res. 2020-10-12

[7]
CoAID-DEEP: An Optimized Intelligent Framework for Automated Detecting COVID-19 Misleading Information on Twitter.

IEEE Access. 2021-2-9

[8]
A machine learning model to predict privacy fatigued users from social media personalized advertisements.

Sci Rep. 2024-2-14

[9]
Machine Learning Hybrid Model for the Prediction of Chronic Kidney Disease.

Comput Intell Neurosci. 2023

[10]
Emotional Distress During COVID-19 by Mental Health Conditions and Economic Vulnerability: Retrospective Analysis of Survey-Linked Twitter Data With a Semisupervised Machine Learning Algorithm.

J Med Internet Res. 2023-3-16

引用本文的文献

[1]
Deep reinforced cognitive analytics algorithm (DRCAM): An advanced method to early detection of cognitive skill impairment using deep learning and reinforcement learning.

MethodsX. 2025-3-24

本文引用的文献

[1]
Features of Mobile Apps for People with Autism in a Post COVID-19 Scenario: Current Status and Recommendations for Apps Using AI.

Diagnostics (Basel). 2021-10-17

[2]
Machine Learning Based Diabetes Classification and Prediction for Healthcare Applications.

J Healthc Eng. 2021

[3]
Monitoring Depression Trends on Twitter During the COVID-19 Pandemic: Observational Study.

JMIR Infodemiology. 2021-7-18

[4]
Mental health, substance use, and suicidal ideation during a prolonged COVID-19-related lockdown in a region with low SARS-CoV-2 prevalence.

J Psychiatr Res. 2021-8

[5]
A deep learning approach for identifying cancer survivors living with post-traumatic stress disorder on Twitter.

BMC Med Inform Decis Mak. 2020-12-14

[6]
Impact of COVID-19 pandemic on mental health in the general population: A systematic review.

J Affect Disord. 2020-8-8

[7]
Factors associated with post-traumatic stress disorder of nurses exposed to corona virus disease 2019 in China.

Medicine (Baltimore). 2020-6-26

[8]
The socio-economic implications of the coronavirus pandemic (COVID-19): A review.

Int J Surg. 2020-4-17

[9]
The psychological impact of quarantine and how to reduce it: rapid review of the evidence.

Lancet. 2020-2-26

[10]
The association between mental disorders and suicide: A systematic review and meta-analysis of record linkage studies.

J Affect Disord. 2019-8-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索